Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 Jun 18;48(3):309–316. doi: 10.1007/s12088-008-0028-z

Laccase: enzyme revisited and function redefined

Krishna Kant Sharma 1, Ramesh Chander Kuhad 1,
PMCID: PMC3476766  PMID: 23100727

Abstract

One enzyme, one physiological role, that’s how most scientists have traditionally looked at it but there is a growing appreciation that some enzymes “moonlight” i.e. in addition to their “primary” catalytic function, they carry other functions as well. Moonlighting refers to a protein that has multiple functions, which are not because of gene fusion; splice variants or multiple proteolytic fragments. Until recently laccases were reported from eukaryotes, e.g. fungi, plants, insect. However there is some evidence for its existence in prokaryotes, a protein with typical features of multi-copper oxidase enzyme family. The present available knowledge of its structure provides a glimpse of its plasticity, revealing a multitude of binding sites responsible for multifunctional activity. Laccase represents an example of a ‘moonlighting’ protein that overcomes the one gene-one structure-one function concept to follow the changes of the organism in its physiological and pathological conditions. It is wide spread in plants, where it is involved in biosynthesis of lignin; in fungi it is involved in lignin degradation, development associated pigmentation (melanin synthesis), detoxification and pathogenesis, and in bacteria, laccases are involved in the synthesis of endospore coat protein (cot A).

Keywords: Isozyme, Laccase, Moonlight, Oxidoreductase, Lignification

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

References

  • 1.Mayer A., Staples R. Laccase: new functions for an old enzyme. Phytochem. 2002;60:551–565. doi: 10.1016/S0031-9422(02)00171-1. [DOI] [PubMed] [Google Scholar]
  • 2.Alexandre G., Zulin I.B. Laccases are widespread in bacteria. Trends Biotechnol. 2000;18:41–42. doi: 10.1016/S0167-7799(99)01406-7. [DOI] [PubMed] [Google Scholar]
  • 3.Givaudan A., Effose A., Faure D., Potier P., Bouillant M.-L., Bally R. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett. 1993;108:205–210. doi: 10.1111/j.1574-6968.1993.tb06100.x. [DOI] [Google Scholar]
  • 4.Faure D., Bouillant M.L., Bally R. Isolation of Azospirillum lipoferum 4T Tn5 mutants affected in melanization and laccase activity. Appl Environ Microbiol. 1994;60:3413–3415. doi: 10.1128/aem.60.9.3413-3415.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Solano F., Garcia E., Perez, Egea E., Sanchez-Amat A. Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl Environ Microbiol. 1997;63:3499–3506. doi: 10.1128/aem.63.9.3499-3506.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Sanchez-Amat A., Lucas-Elio P., Fernandez E., Garcia-Borron J.C., Solano F. Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta. 2001;1547:104–116. doi: 10.1016/s0167-4838(01)00174-1. [DOI] [PubMed] [Google Scholar]
  • 7.Dittmer N.T., Suderman R.J., Jiang H., Zhu Y.C., Gorman M.J., Kramer K.J., Kanost M.R. Characterization of cDNA encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol. 2004;34:29–41. doi: 10.1016/j.ibmb.2003.08.003. [DOI] [PubMed] [Google Scholar]
  • 8.Arakane Y., Muthukrishnan S., Beeman R.W., Kanost M. R., Kramer K. J. Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. PNAS. 2005;102:11337–11342. doi: 10.1073/pnas.0504982102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Beloqui A., Pita M., Polaina J. Novel Polyphenol Oxidase Mined from Metagenome Expression Library of Bovine Rumen: Biochemical Properties, Structural Analysis and Phylogenetic Relationship. J Biol Chem. 2006;281:22933–22942. doi: 10.1074/jbc.M600577200. [DOI] [PubMed] [Google Scholar]
  • 10.Yoshida H. Chemistry of Lacquer (Urushi) part 1. J Chem Soc. 1883;43:472–486. [Google Scholar]
  • 11.Bertrand G. Sur le latex de I’arbre á laque. C R. Acad Sci. 1894;118:1215–1218. [Google Scholar]
  • 12.Laborde J. Sur la casse des vins C R Hebd Seanes. Acad Sci. 1896;123:1074–1075. [Google Scholar]
  • 13.Malkin R., Malmstrom B.G., Vanngard T. The reversible removal of one specific copper (II) from fungal laccase. Eur J Biochem. 1969;7:253. doi: 10.1111/j.1432-1033.1969.tb19600.x. [DOI] [PubMed] [Google Scholar]
  • 14.Malmstrom B.G., Andreason L.E., Reinhammar R. In: The Enzymes. 3rd edn. Boyer P.D., editor. New York: Academic Press; 1975. p. 507. [Google Scholar]
  • 15.Holwerda R.A., Wherland S., Gray H.B. Electron transfer reactions of copper proteins. Annu Rev Biophys Bioeng. 1976;5:363. doi: 10.1146/annurev.bb.05.060176.002051. [DOI] [PubMed] [Google Scholar]
  • 16.Mayer A.M., Harel E. Polyphenol oxidases in plants. Phytochem. 1979;33:765–767. [Google Scholar]
  • 17.Reinhammar B. Laccase. In: Lontie R., editor. Copper proteins and copper enzymes. Boca Raton: CRC Press; 1984. pp. 1–35. [Google Scholar]
  • 18.Thurston C.F. The structure and function of fungal laccases. Microbiol. 1994;140:19–26. doi: 10.1099/13500872-140-1-19. [DOI] [Google Scholar]
  • 19.Eriksson K-E L (2000) Lignocellulose, lignin, ligninases. Encyclopedia Microbiol, Vol III, ed. II, Academic Press
  • 20.Xu F. Applications of oxidoreductases: Recent progress. Industrial Biotechnol. 2005;1:38–50. doi: 10.1089/ind.2005.1.38. [DOI] [Google Scholar]
  • 21.Jeffery C.J. Moonlighting proteins: old proteins learning new tricks. Trends Genet. 2003;19:415–417. doi: 10.1016/S0168-9525(03)00167-7. [DOI] [PubMed] [Google Scholar]
  • 22.Jeffery C.J. Moonlighting proteins. Trends Biochem Sci. 1999;24:8–11. doi: 10.1016/S0968-0004(98)01335-8. [DOI] [PubMed] [Google Scholar]
  • 23.Lindell D., Jaffe J.D., Johnson Z.I., Church G.M., Chisholm S.W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438(3):86–89. doi: 10.1038/nature04111. [DOI] [PubMed] [Google Scholar]
  • 24.Rajendran V., Gupta G., Appel D., Atanassov P. Laccase-catalyzed direct electron transfer: application in gas-diffusion air cathodes for biofuel cells. Science. 2002;296:1222–1223. doi: 10.1126/science.296.5571.1222. [DOI] [PubMed] [Google Scholar]
  • 25.Casadevall A., Perfect J.R. Cryptococcus neoformans. Washington, DC: ASM press; 1998. [Google Scholar]
  • 26.Zhu X., Williamson P.R. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Research. 2004;5:1–10. doi: 10.1016/j.femsyr.2004.04.004. [DOI] [PubMed] [Google Scholar]
  • 27.Lide L., Tewari R.P., Williamson P.R. Laccase protects Cryptococcus neoformans from antifungal activity of alveolar macrophages. Infect Immun. 1999;67:6034–6039. doi: 10.1128/iai.67.11.6034-6039.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Martins L.O., Soares C.M., Pereira M.M., Teixeira M., Costa T., Jones G.H., Henriques A.O. Molecular and Biochemical Characterization of a Highly Stable Bacterial Laccase That Occurs as a Structural Component of the Bacillus subtilis Endospore Coat. J Biol Chem. 2002;277:18849–18859. doi: 10.1074/jbc.M200827200. [DOI] [PubMed] [Google Scholar]
  • 29.Zhu X., Gibbons J., Garcia-Rivera J., Casadevall A., Williamson P.R. Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infect Immun. 2001;69(9):5589–5596. doi: 10.1128/IAI.69.9.5589-5596.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Enguita F. J., Martins L.O., Henriques A.O., Carrondo M.A. Crystal Structure of a Bacterial Endospore Coat Component: A Laccase with enhanced thermostability properties. J Biol Chem. 2003;278:19416–19425. doi: 10.1074/jbc.M301251200. [DOI] [PubMed] [Google Scholar]
  • 31.Mizuguchi K., Deane C.M., Blundell T.L., Johnson M.S., Overington J.P. JOY: protein sequence-structure representation and analysis. Bioinformatics. 1998;14:617–623. doi: 10.1093/bioinformatics/14.7.617. [DOI] [PubMed] [Google Scholar]
  • 32.Messerschmidt A., Steigemann W., Huber R., Lang G., Kroneck P.M. X-ray crystallographic characterisation of type-2-depleted ascorbate oxidase from zucchini. Eur J Biochem. 1992;209(2):597–602. doi: 10.1111/j.1432-1033.1992.tb17325.x. [DOI] [PubMed] [Google Scholar]
  • 33.Ducros V., Brzozowski A.M., Wilson K.S., Brown S.H., Ostergaard P., Schneide P., Pedersen A.H., Davies G.J. Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 A resolution. Nat Struct Biol. 1998;5:310–316. doi: 10.1038/nsb0498-310. [DOI] [PubMed] [Google Scholar]
  • 34.Donovan W., Zheng L., Sandman K., Losick R. Genes encoding spore coat polypeptides from Bacillus subtilis. J Mol Biol. 1987;196:1–10. doi: 10.1016/0022-2836(87)90506-7. [DOI] [PubMed] [Google Scholar]
  • 35.Zheng L., Losick R. Cascade regulation of spore coat gene expression in Bacillus subtilis. J Mol Biol. 1990;212:645–660. doi: 10.1016/0022-2836(90)90227-D. [DOI] [PubMed] [Google Scholar]
  • 36.Zheng L., Donovan W.P., Fitz-James P.C., Losick R. Gene encoding a morphogenic protein required in the assembly of outer coat of Bacillus subtilis endospore. Genes Dev. 1988;2:1047–1054. doi: 10.1101/gad.2.8.1047. [DOI] [PubMed] [Google Scholar]
  • 37.Driks A. Bacillus subtilis spore coat. Microbiol Mol Biol Rev. 1999;63:1–20. doi: 10.1128/mmbr.63.1.1-20.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Zhu X., Gibbons J., Garcia-Rivera J., Casadevall A., Williamson P.R. Laccase of Cryptococcus neoformans Is a Cell Wall-Associated Virulence Factor. Infect Immun. 2001;69(9):5589–5596. doi: 10.1128/IAI.69.9.5589-5596.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Li K., Xu F., Karl-Erik L., Eriksson Comparison of Fungal Laccases and Redox Mediators in Oxidation of a Nonphenolic Lignin Model Compound. Appl Environ Microbiol. 1999;65(6):2654–2660. doi: 10.1128/aem.65.6.2654-2660.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Xu F. Recent progress in laccase study: properties, enzymology, production, and applications. In: Flickinger M.C., Drew S.W., editors. Encyclopedia of Bioprocessing Technology: Fermentation, Biocatalysis, and Bioseparation. New York, USA: John Wiley and Sons; 1999. pp. 1545–1554. [Google Scholar]
  • 41.Claus H. Laccase: Structure, reactions, distribution. Micron. 2004;35:93–96. doi: 10.1016/j.micron.2003.10.029. [DOI] [PubMed] [Google Scholar]
  • 42.Kirk T.K., Harkin J.M., Cowling E.B. Degradation of the lignin model compound syringylgylcol-B guaiacyl ether by Polyporus versicolor and Stereum frustulatum. Biochim Biophys Acta. 1968;165:145. doi: 10.1016/0304-4165(68)90199-2. [DOI] [PubMed] [Google Scholar]
  • 43.Ishihara T., Miyazaki M. Demethylation of lignin and lignin models by fungal laccase. Mokuzai Gakkaishi. 1974;18:415. [Google Scholar]
  • 44.Bourbonnais R., Paice M.G. Oxidation of nonphenolic substrates: An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990;407:89–92. doi: 10.1016/0014-5793(90)80298-w. [DOI] [PubMed] [Google Scholar]
  • 45.Kuhad R.C., Singh A., Eriksson K.-E. L. Biotechnology in the pulp and paper industry. Berlin: Springer Verlag; 1997. pp. 45–125. [Google Scholar]
  • 46.Call H.P., Mucke I. History, overview and applications of mediated lignolytic systems, especially laccase-mediator systems (LignozymR-process) J Biotechnol. 1997;53:215–236. doi: 10.1016/S0168-1656(97)01683-0. [DOI] [Google Scholar]
  • 47.Yaver D.S., Xu F., Golightly E.J., Brown K.M., Brown S.H., Rey M.W., Schneider P., Haikier T., Mondorf K., Dalboge H. Purification, characterization, molecular cloning and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol. 1996;62(3):834–841. doi: 10.1128/aem.62.3.834-841.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Yaver D.S., Golightly E. J. Cloning and characterization of hree laccase genes from the white rot basidiomycete Trametes villosa: genomic organization of the laccase gene. family Gene. 1996;181:95–102. doi: 10.1016/s0378-1119(96)00480-5. [DOI] [PubMed] [Google Scholar]
  • 49.Wahleithner J.A., Xu F., Brown K.M., Brown S.H., Golightly E.J., Halkier S., Kauppinen A., Pderson A., Schnelder P. The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet. 1976;29:395–403. doi: 10.1007/BF02208621. [DOI] [PubMed] [Google Scholar]
  • 50.Giardina P., Aurilia V., Cannio R., Marzullo L., Amoresano A., Siciliano R., Pucci P., Sannia G. The gene, protein and glycan structures of laccase from Pleurotus ostreatus. Eur J Biochem. 1996;235:508–515. doi: 10.1111/j.1432-1033.1996.00508.x. [DOI] [PubMed] [Google Scholar]
  • 51.Yaver Molecular Characterization of Laccase Genes from the Basidiomycete Coprinus cinereus and Heterologous Expression of the Laccase Lcc1. App Environ Microbiol. 1999;65(11):4943–4948. doi: 10.1128/aem.65.11.4943-4948.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Mansur M., Suarez T., Fernandez-Larrea J.B., Brizuela M.A., Gonzalez A.E. Identification of laccase gene family in the new lignin degrading basidiomycete CECT 20197. Appl Environ Microbiol. 1997;63(7):2637–2646. doi: 10.1128/aem.63.7.2637-2646.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES