Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2009 Jan 8;48(4):410–431. doi: 10.1007/s12088-008-0052-z

Bioactive compounds from marine actinomycetes

Renu Solanki 1, Monisha Khanna 1, Rup Lal 2,
PMCID: PMC3476783  PMID: 23100742

Abstract

Actinomycetes are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Among its various genera, Streptomyces, Saccharopolyspora, Amycolatopsis, Micromonospora and Actinoplanes are the major producers of commercially important biomolecules. Several species have been isolated and screened from the soil in the past decades. Consequently the chance of isolating a novel actinomycete strain from a terrestrial habitat, which would produce new biologically active metabolites, has reduced. The most relevant reason for discovering novel secondary metabolites is to circumvent the problem of resistant pathogens, which are no longer susceptible to the currently used drugs. Existence of actinomycetes has been reported in the hitherto untapped marine ecosystem. Marine actinomycetes are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, insecticidal and enzyme inhibition. Bioactive compounds from marine actinomycetes possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens.

Keywords: Marine actinomycetes, Bioactive compounds

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

References

  • 1.Bull AT (2004) Microbial diversity and biosprospecting. ASM Press
  • 2.Berdy J. Bioactive microbial metabolites. J Antibiot (Tokyo) 2005;58:1–26. doi: 10.1038/ja.2005.1. [DOI] [PubMed] [Google Scholar]
  • 3.Mann J. Natural products as immunosuppressive agents. Nat Prod Rep. 2001;18:417–430. doi: 10.1039/b001720p. [DOI] [PubMed] [Google Scholar]
  • 4.Pecznska Czoch W., Mordaski M. Actinomycetes in biotechnology. London: Academic Press; 1988. pp. 219–283. [Google Scholar]
  • 5.Reeves A.R., Post D.A., Boom T.J.V. Physical genetic map of the erythromycin producing organism Saccharopolyspora erythraea. Microbiology. 1998;144:2151–2159. doi: 10.1099/00221287-144-8-2151. [DOI] [PubMed] [Google Scholar]
  • 6.Madduri K., Waldron C., Merlo D.J. Rhamnose biosynthesis pathway supplies precursors for primary and secondary metabolism in Saccharopolyspora spinosa. J Bacteriol. 2001;183:5632–5638. doi: 10.1128/JB.183.19.5632-5638.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Wanq L., Yun B.S., Geirge N.P., Wendt-Pienkowski E., Galm U., Oh T.J., Couqhlin J.M., Zhang G., Tao M., Shen B. Glycopeptide antitumor antibiotic zorbamycin from Streptomyces flavoviridis ATCC 21892: strain improvement and structure elucidation. J Nat Prod. 2007;70:402–406. doi: 10.1021/np060592k. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Okami Y., Tazaki T., Katumata S., Honda K., Suzuki M., Umezawa H. Studies on Streptomyces kanamyceticus, producer of kanamycin. J Antibiot (Tokyo) 1959;12:252–256. [PubMed] [Google Scholar]
  • 9.Zhou J., Sun C., Wanq N., Gao R., Bai S., Zhenq H., You X., Li R. Preliminary report on the biological effects of space flight on the producing strain of a new immunosuppressant kanglemycin C. J Ind Microbiol. 2006;33:707–712. doi: 10.1007/s10295-006-0118-z. [DOI] [PubMed] [Google Scholar]
  • 10.Lomovskaya N., Fonstein L., Ruan X., Stassi D., Katz L., Hutchinson C.R. Gene disruption and replacement in the rapamycin producing Streptomyces hygroscopicus strain ATCC 29253. Microbiology. 1997;143:875–883. doi: 10.1099/00221287-143-3-875. [DOI] [PubMed] [Google Scholar]
  • 11.Steinrauf L.K., Pinkerton M., Chamberlin J.W. The structure of nigericin. Biochem Biophys Res Commun. 1968;33:29–31. doi: 10.1016/0006-291X(68)90249-0. [DOI] [PubMed] [Google Scholar]
  • 12.Wu K., Chunq L., Revill W.P., Katz L., Reeves C.D. The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. Gene. 2000;251:81–90. doi: 10.1016/S0378-1119(00)00171-2. [DOI] [PubMed] [Google Scholar]
  • 13.Lam K.S., Hesler G.A., Mattei J.M., Mamber S.W., Forenza S., Tomita K. Himastatin, a new antitumor antibiotic from Streptomyces hygrocopicus. I. Taxonomy of producing organism, fermentation and biological activity. J Antibiot (Tokyo) 1990;43:956–960. doi: 10.7164/antibiotics.43.956. [DOI] [PubMed] [Google Scholar]
  • 14.Jian X., Pang X., Yu Y., Zhou X., Deng Z. Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10–22. Antonie van Leeuwenhoek. 2006;90:29–39. doi: 10.1007/s10482-006-9058-x. [DOI] [PubMed] [Google Scholar]
  • 15.Petkovic H., Cullum J., Hranueli D., Hunter I.S., Peric Concha N., Pigac J., Thamchaipenet A., Vujaklija D., Long P.F. Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev. 2006;70:704–728. doi: 10.1128/MMBR.00004-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Caffrey P., Lynch S., Flood E., Finnan S., Oliynyk M. Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes. Chem Biol. 2001;8:71–723. doi: 10.1016/S1074-5521(01)00046-1. [DOI] [PubMed] [Google Scholar]
  • 17.Hu Y., Floss H.G. Further studies on the biosynthesis of the manumycin type antibiotic asukamycin and the chemical synthesis of protoasukamycin. J Am Chem Soc. 2004;126:3837–3844. doi: 10.1021/ja039336+. [DOI] [PubMed] [Google Scholar]
  • 18.Malanicheva I.A., Kozmian L.I., Dudnik I., Stromilova L.I., Novozhenov M. Protoplast fusion in Streptomyces fradiae strains producing neomycin and tylosin. Antibiot Khimioter. 1992;37:3–7. [PubMed] [Google Scholar]
  • 19.Decker H., Haag S. Cloning and characterization of a polyketide synthase gene from Streptomyces fradiae Tu2717, which carries the genes for biosynthesis of the anglucycline antibiotic urdamycin A and a gene probably involved in its oxygenation. J Bacteriol. 1995;177:6126–6136. doi: 10.1128/jb.177.21.6126-6136.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Rorers T.O., Birnbaum J. Biosynthesis of fosfomycin by Streptomyces fradiae. Antimicrob Agents Chemother. 1974;5:121–132. doi: 10.1128/aac.5.2.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Perez-Zuniqua F.J., Seco E.M., Cuesta T., Dequenhardt F., Rohr J., Vallin C., Iznaqa Y., Perez M.E., Gonzalez L., Malpartida F. CE-108, a new macrolide tetraene antibiotic. J Antibiot (Tokyo) 2004;57:197–204. doi: 10.7164/antibiotics.57.197. [DOI] [PubMed] [Google Scholar]
  • 22.Seco E.M., Zuniga F.J.P., Rolon M.S., Malpartida F. Starter unit choice determines the production of two tetraene macrolides, rimocidin and CE-108, in Streptomyces diastaticus var. 108. Chem Biol. 2004;11:357–366. doi: 10.1016/j.chembiol.2004.02.017. [DOI] [PubMed] [Google Scholar]
  • 23.Kamazawa S., Asami Y., Awane K., Ohtani H., Fukuchi C., Mikawa T., Hayase T. Structural studies of new macrolide antibiotics, shurimycins A and B. J Antibiot ( Tokyo) 1994;47:688–96. doi: 10.7164/antibiotics.47.688. [DOI] [PubMed] [Google Scholar]
  • 24.Piraee M., White R.L., Vining L.C. Biosynthesis of the dichloroacetyl component of chloramphenicol in Streptomyces venezuelae ISP5230 genes required for halogenation. Microbiology. 2004;15:85–94. doi: 10.1099/mic.0.26319-0. [DOI] [PubMed] [Google Scholar]
  • 25.Krishna P.S.M., Venkateshwarlu G., Rao L.Y. Studies on fermentative production of rifamycin using Amycolatopsis mediterranei. J Microbiol Biotechnol. 1998;14:689–691. doi: 10.1023/A:1008801302687. [DOI] [Google Scholar]
  • 26.Hughes RA, Thompson SP, Alcaraz L and Moody CJ (2004) Total synthesis of the thiopeptide amythiamicin D. Chem Commun 946–948 [DOI] [PubMed]
  • 27.Rhee K.H. Isolation and characterization of Streptomyces sp. KH614 producing anti-VRE (vancomycin-resistant enterococci) antibiotics. J Gen Appl Microbiol. 2002;48:321–327. doi: 10.2323/jgam.48.321. [DOI] [PubMed] [Google Scholar]
  • 28.Schully K., Wang J., Pettis G.S. Further molecular analysis of a bacteriocin produced by the sweet potato pathogen Streptomyces ipomoeae that shows inter strain inhibition. Phytopathology. 2006;96:105. doi: 10.1094/PHYTO-96-0105. [DOI] [PubMed] [Google Scholar]
  • 29.Nomi R. Streptomycin formation by intact mycelium of Streptomyces griseus. J Bacteriol. 1963;86:1220–1230. doi: 10.1128/jb.86.6.1220-1230.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Perkins J.B., Guterman S.K., Howitt C.L., Williams V.E., II, Pero J. Streptomyces genes involved in biosynthesis of the peptide antibitotic valinomycin. J Bacteriol. 1990;172:3108–3116. doi: 10.1128/jb.172.6.3108-3116.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Stroshane R.M., Chan J.A., Rubalcaba E.A., Garretson A.L., Aszalos A.A., Roller P.P. Isolation and structure elucidation of novel griseorhodin. J Antibiot (Tokyo) 1979;32:197–204. doi: 10.7164/antibiotics.32.197. [DOI] [PubMed] [Google Scholar]
  • 32.Warnick-Pickle D.J., Byrne K.M., Pandey R.C., White R.J. Fredericamycin A, a new antitumor antibiotic. II. Biological properties. J Antibiot (Tokyo) 1981;34:1402–1407. doi: 10.7164/antibiotics.34.1402. [DOI] [PubMed] [Google Scholar]
  • 33.Yamaquchi H., Sato S., Yoshida S., Takada K., Itoh M., Seto H., Otake N. Capuramycin, a new nucleoside antibiotic. Taxonomy, fermentation, isolation and characterization. J Antibiot (Tokyo) 1986;39:1047–1053. doi: 10.7164/antibiotics.39.1047. [DOI] [PubMed] [Google Scholar]
  • 34.Bruntner C., Binder T., Pathom-aree W., Goodfellow M., Bull A.T., Potterat O., Puder C., Horer S., Schmid A., Bolek W., Wagner K., Mihm G., Fiedler H.P. Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antartica. J Antibiot (Tokyo) 2005;58:346–349. doi: 10.1038/ja.2005.43. [DOI] [PubMed] [Google Scholar]
  • 35.Pojer F., Wemakor E., Kammerer B., Chen H., Walsh C.T., Li S.M., Heide L. CloQ, a prenyltransferase involved in clorobiocin biosynthesis. Biochem. 2003;100:2316–2321. doi: 10.1073/pnas.0337708100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Sun Y., Zhou X., Liu J., Bao K., Zhang G., Tu G., Kieser T., Deng Z. Streptomyces nanchangensis a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology. 2002;148:361–371. doi: 10.1099/00221287-148-2-361. [DOI] [PubMed] [Google Scholar]
  • 37.Malkova I.V., Borisova O.K., Pavlova M.V., Zemlianitskaia E.P., Serquuva T.I. In vitro activity of a new glycopeptide antibiotic eremomycin in relation to obligate anaerobic gram positive bacteria. Antibiot Khimioter. 1991;36:17–20. [PubMed] [Google Scholar]
  • 38.Trenin A.S., Fedorova G.B., Laiko A.V., Dudnik I. Increase in eremomycin production by regeneration and UV-irradiation of Amycolatopsis orientalis subsp. eremomycini protoplasts. Antibiot Khimioter. 2001;46:6–11. [PubMed] [Google Scholar]
  • 39.Luo A., Gao C., Song Y., Tan H., Liu Z. Biological responses of a Streptomyces strain producing nikkomycin to space flight space. Med Eng (Beijing) 1998;11:411–414. [PubMed] [Google Scholar]
  • 40.Weitnauer G., Muhlenweg A., Trefzer A., Hoffmeister D., Submuth R.D., Jung G., Welzel K., Vente A., Girreser U., Bechthold A. Biosynthesis of the orthosomycin antibiotic avilamycin A: Deductions from the molecular analysis of the avibiosynthetic gene cluster of Streptomyces viridochromogenes Tu57 and production of new antibiotics. Chem Biol. 2001;8:569–581. doi: 10.1016/S1074-5521(01)00040-0. [DOI] [PubMed] [Google Scholar]
  • 41.Iqarashi M., Hayashi C., Homma Y., Hattori S., Kinoshita N., Hamada M., Takeuchi T. Tubelactomicin A, a novel 16-membered lactone antibiotic from Nocardia sp. I. Taxonomy, production, isolation and biological properties. J Antibiot (Tokyo) 2000;53:1096–1101. doi: 10.7164/antibiotics.53.1096. [DOI] [PubMed] [Google Scholar]
  • 42.Theriault R.J., Rasmussen R.R., Kohl W.L., Prokop J.F., Hutch T.B., Barlow G.J. Benzanthrins A and B, a new class of quinone antibiotics. I. Discovery, fermentation and antibacterial activity. J Antibiot (Tokyo) 1986;39:1509–1514. doi: 10.7164/antibiotics.39.1509. [DOI] [PubMed] [Google Scholar]
  • 43.Omura S. Philosophy of new drug discovery. Microbiol Rev. 1986;50:259–279. doi: 10.1128/mr.50.3.259-279.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Ylihonko K., Tuikkanen J., Jussila S., Cong L., Mantsala P. A gene cluster involved in nogalamycin biosynthesis from Streptomyces nogalater: sequence analysis and complementation of early block mutations in the anthracycline pathway. Mol Gen Genet. 1996;251:113–120. doi: 10.1007/BF02172908. [DOI] [PubMed] [Google Scholar]
  • 45.Raty K., Hautala A., Torkkell S., Kantola J., Mantsala P., Hakala J., Ylihonko K. Characterization of mutations in aclacinomycin, a non-producing Streptomyces galilaeus strains with altered glycosylation patterns. Microbiology. 2002;148:3375–3384. doi: 10.1099/00221287-148-11-3375. [DOI] [PubMed] [Google Scholar]
  • 46.Nakata M., Saito M., Inouye Y., Nakamura S., Hayakawa Y., Seto H. A new anthracycline antibiotic, cinerubin R. Taxonomy, structural elucidation and biological activity. J Antibiot (Tokyo) 1992;45:1599–1608. doi: 10.7164/antibiotics.45.1599. [DOI] [PubMed] [Google Scholar]
  • 47.Samain D., Cook J.C., Rinehart K.L. Structure of scopafungin, a potent nonpolyene antifungal antibiotic. J Am Chem Soc. 1982;104:4129–4141. doi: 10.1021/ja00379a015. [DOI] [Google Scholar]
  • 48.Ikeda H., Inoue M., Satoshi O. Improvement of macrolide antibiotic producing Streptomycete strains by the regeneration of protoplasts. J Antibiot (Tokyo) 1982;36:283–288. doi: 10.7164/antibiotics.36.283. [DOI] [PubMed] [Google Scholar]
  • 49.Lagard V.C., Blanc V., Gil P., Naudin L., Lorenzon S., Famechon A., Jacques N.B., Crouzet J., Thibaut D. Pristinamycin I biosynthesis in Streptomyces pristinaespiralis: molecular characterization of the first two structural peptide synthetase genes. J Bacteriol. 1997;179:705–713. doi: 10.1128/jb.179.3.705-713.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Kinashi H., Mori E., Hatani A., Nimi O. Isolation and characterization of linear plasmids from lankacidin producing Streptomyces species. J Antibiot (Tokyo) 1994;47:1447–1455. doi: 10.7164/antibiotics.47.1447. [DOI] [PubMed] [Google Scholar]
  • 51.Konoshenko G.I., Avraleva I.V., Anisova L.N., Orlova T.I. Biologically active substances by a number of strains of the actinomycin C producer Streptomyces chyrsomallus. Antibiot Khimioter. 1994;39:22–25. [PubMed] [Google Scholar]
  • 52.Jingsong Y.E., Dickens M.L., Plater R., Yun L.I., Jessica L., Strohl W.R. Isolation and sequence analysis of polyketide synthase genes from the daunomycin producing Streptomyces sp. strain C5. J Bacteriol. 1994;176:6270–6280. doi: 10.1128/jb.176.20.6270-6280.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Hara O., Hutchinson C.R. A macrolide 3-O-acyltransferase gene from the midecamycin producing species Streptomyces mycarofaciens. J Bacteriol. 1992;174:5141–5144. doi: 10.1128/jb.174.15.5141-5144.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Ikeda H., Nonomiya T., Usami M., Ohta T., Omura S. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Biochem. 1999;96:9509–9514. doi: 10.1073/pnas.96.17.9509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Ikeda H., Omura S. Control of avermectin biosynthesis in Streptomyces avermitilis for the selective production of a useful component. J Antibiot (Tokyo) 1995;48:549–562. doi: 10.7164/antibiotics.48.549. [DOI] [PubMed] [Google Scholar]
  • 56.Iquarashi M., Kinoshita N., Ikeda T., Kameda M., Hamada M., Takeuchi T. Resormycin, a novel herbicidal and antifungal antibiotic produced by a strain of Streptomyces platensis. I. Taxonomy, production, isolation and biological properties. J Antibiot (Tokyo) 1997;50:1020–1025. doi: 10.7164/antibiotics.50.1020. [DOI] [PubMed] [Google Scholar]
  • 57.Kawakami Y., Matsuwaka S., Otani T., Kondo H., Nakamura S. Ileumycin, a new antibiotic against Glomerella cingulata. J Antibiot (Tokyo) 1978;31:112–116. doi: 10.7164/antibiotics.31.112. [DOI] [PubMed] [Google Scholar]
  • 58.Mao Y., Varoglu M., Sherman D.H. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic Mitomycin C from Streptomyces lavendulae NRRL 2564. Chem Biol. 1999;6:251–263. doi: 10.1016/S1074-5521(99)80040-4. [DOI] [PubMed] [Google Scholar]
  • 59.Johnson L.E., Dietz A. Lomofungin, a new antibiotic produced by Streptomyces lomondensis sp. Appl Microbiol. 1969;17:755–759. doi: 10.1128/am.17.5.755-759.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Johnson L.E., Dietz A. Kalafungin, a new antibiotic produced by Streptomyces tanashiensis strain kala. Appl Microbiol. 1968;16:1815–1821. doi: 10.1128/am.16.12.1815-1821.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Cassinelli G., Cotta E., D’Amico G., Bruna C., Grein A., Mazzoleni R., Ricciardi M.L., Tintinelli R. Thiamycins, new anthelmintic and antiprotozoal antibiotics produced by Streptomyces michiganensis var. amylolyticus var. nova. Arch Mikrobiol. 1970;70:197–210. doi: 10.1007/BF00407710. [DOI] [PubMed] [Google Scholar]
  • 62.Bruna C.D., Ricciardi M.L., Sanfilippo A. Axenomycins, new cestocidal antibiotics. Antimicrob Agents Chemother. 1973;3:708–710. doi: 10.1128/aac.3.6.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Wu R.Y., Yanq L.M., Yokoi T., Lee K.H. Neihumicin, a new cytotoxic antibiotic from Micromonospora neihuensis. I. The producing organism, fermentation, isolation and biological properties. J Antibiot (Tokyo) 1988;41:481–487. doi: 10.7164/antibiotics.41.481. [DOI] [PubMed] [Google Scholar]
  • 64.Ohta T., Haseqawa M. Analysis of the self defense gene (fmrO) of a fortimicin A (astromicin) producer, Micromonospora olivasterospora: comparison with other aminoglycoside-resistance encoding genes. Gene. 1993;127:63–69. doi: 10.1016/0378-1119(93)90617-C. [DOI] [PubMed] [Google Scholar]
  • 65.Escalante L., Gonzalez R., Obregon A.M., Sanchez S. Carbon catabolite regulation of gentamicin formation. J Antibiot (Tokyo) 1992;45:465–469. doi: 10.7164/antibiotics.45.465. [DOI] [PubMed] [Google Scholar]
  • 66.Ross A., Schugerl K. Tetracycline production by Streptomyces aureofaciens: the time lag of production. Appl Microbiol Biotechnol. 2005;29:174–180. [Google Scholar]
  • 67.Gauze G.F., Preobrazhenskaia T.P., Ivanitskaia L.P., Kovalenkova V.K. Synthesis of new antibiotic monomycin by Actinomyces circulatus var. monomycini cultures. Antibiotiki. 1960;5:3–6. [PubMed] [Google Scholar]
  • 68.Malanicheva I.A., Kozmian L.I., Dudnik I., Florova G., Orekhov A.V. Comparative study of Streptomyces producer of aminoglycoside antibiotics, monomycin and kanamycin and the strain 344 obtained by fusion of their protoplasts by the method of restrictive total DNA fingerprinting. Antibiot Khimioter. 1992;37:5–7. [PubMed] [Google Scholar]
  • 69.Kumaqai K., Fukui A., Tanaka S., Ikemoto M., Moriquchi K., Nabeshima S. PC-766B, a new macrolide antibiotic produced by Nocardia brasiliensis. II. Isolation, physico-chemical properties and structures elucidation. J Antibiot (Tokyo) 1993;46:1139–1144. doi: 10.7164/antibiotics.46.1139. [DOI] [PubMed] [Google Scholar]
  • 70.Xia H., Wanq Y., Sun J. Characterization of polyketide ketoreductase gene (MPKR) from midecamycin producing strain (Streptomyces mycarofaciens 1748) Chin J Biotechnol. 1994;10:169–178. [PubMed] [Google Scholar]
  • 71.Schlegel L., Merad B., Rostane H., Broc V., Bouvet A. In vitro activity of midecamycin diacetate, a 16-membered macrolide, against Streptococcus pyogenes isolated in France, 1995–1999. Clin Microbiol Infect. 2001;7:362–366. doi: 10.1046/j.1198-743x.2001.00280.x. [DOI] [PubMed] [Google Scholar]
  • 72.Karwowski J.P., Jackson M., Maus M.L., Kohl W.L., Humphrey P.E., Tillis P.M. Dunaimycins, a new complex of spiroketal 24-membered macrolides with immunosuppressive activity. I. Taxonomy of the producing organisms, fermentation and antimicrobial activity. J Antibiot (Tokyo) 1991;44:1312–1317. doi: 10.7164/antibiotics.44.1312. [DOI] [PubMed] [Google Scholar]
  • 73.Mitchell J.I., Loqan P.G., Cushinq K.E., Ritchie D.A. Novobiocin-resistance sequences from the novobiocin producing strain Streptomyces niveus. Mol Microbiol. 1990;4:845–849. doi: 10.1111/j.1365-2958.1990.tb00655.x. [DOI] [PubMed] [Google Scholar]
  • 74.Naumova I.B., Diqumbai K., Potekhina N.V., Shashkov A.S., Terekhova L.P. Teichoic acid from the cell wall of Actinomadura carminata a producer of the antibiotic carminomycin. Bio Org Khim. 1986;12:670–678. [PubMed] [Google Scholar]
  • 75.Terekhova L.P., Galatenko O.A., Preobrazhenskaia T.P., Tolstykh I.V., Ol’Khovatova O.L., Malkina N.D., Rubtsova E.V. Actinomadura species as antibiotic producers. Antibiot Khimioter. 1991;36:3–5. [PubMed] [Google Scholar]
  • 76.Ashton R.J., Keniq M.D., Luk K., Planterose D.N., Scott-Wood G. MM46115, a new antiviral antibiotic from Actinomadura pelletieri. Characteristics of the producing cultures, fermentation, isolation, physiochemical and biological properties. J Antibiot (Tokyo) 1990;43:1387–1393. doi: 10.7164/antibiotics.43.1387. [DOI] [PubMed] [Google Scholar]
  • 77.Nishiyama Y., Suqawara K., Tomita K., Yamamoto H., Kamei H., Oki T. Verucopeptin, a new antitumor antibiotic active against B16 melanoma. I. Taxonomy, production, isolation, physico-chemical properties and biological activity. J Antibiot (Tokyo) 1993;46:921–927. doi: 10.7164/antibiotics.46.921. [DOI] [PubMed] [Google Scholar]
  • 78.Abe N., Nakakita Y., Nakamura T., Enoki N., Uchida H., Munekata M. Novel antitumor antibiotics, saptomycins. I. Taxonomy of the producing organism, fermentation, HPLC analysis and biological activities. J Antibiot (Tokyo) 1993;46:1530–1535. doi: 10.7164/antibiotics.46.1530. [DOI] [PubMed] [Google Scholar]
  • 79.Abe N., Nakakita Y., Nakamura T., Enoki N., Uchida H., Takeo O., Munekata M. Novel cytocidal compounds, oxapropalines from Streptomyces sp. G324 producing lavendamycin. I. Taxonomy of the producing organism, fermentation, isolation and biological activities. J Antibiot (Tokyo) 1993;46:1672–1677. doi: 10.7164/antibiotics.46.1672. [DOI] [PubMed] [Google Scholar]
  • 80.Balitz D.M., Bush J.A., Bradner W.T., Doyle T.W., Herron F.A.O., Nettleton D.E. Isolation of lavendamycin — A new antibiotic from Streptomyces lavendulae. J Antibiot (Tokyo) 1982;3:259–265. doi: 10.7164/antibiotics.35.259. [DOI] [PubMed] [Google Scholar]
  • 81.Arai T., Yazawa K., Mikami Y., Kubo A., Takahashi K. Isolation and characterization of satellite antibiotics mimosamycin and chlorocarcins from Streptomyces lavendulae, streptothricin source. J Antibiot (Tokyo) 1976;4:398–407. doi: 10.7164/antibiotics.29.398. [DOI] [PubMed] [Google Scholar]
  • 82.Komori T., Ezaki M.E., Kohsaka M., Aoki H., Imanaka H. Lavendomycin, a new antibiotic. I. Taxonomy, isolation and characterization. J Antibiot (Tokyo) 1985;38:691–698. doi: 10.7164/antibiotics.38.691. [DOI] [PubMed] [Google Scholar]
  • 83.Umezawa I., Tronouet C., Funayama S., Okada K., Komiyama K. A novel antibiotic, sohbumycin. Taxonomy, fermentation, isolation and physico-chemical and biological characteristiocs. J Antibiot (Tokyo) 1985;XXXVIII:967–971. doi: 10.7164/antibiotics.38.967. [DOI] [PubMed] [Google Scholar]
  • 84.Ishibashi M., Funayama S., Anraku Y., Komiyama K., Omura S. Novel antibiotics furaquinocins C, D, E, F, G and H. J Antibiot (Tokyo) 1991;44:390–395. doi: 10.7164/antibiotics.44.390. [DOI] [PubMed] [Google Scholar]
  • 85.Karwowski J.P., Jackson M., Theriault R.J., Prokop J.F., Maus M.L., Hansen C.F., Hensey D.M. Arizonins, a new complex of antibiotics related to kalafungin. I. Taxonomy of the producing culture, fermentation and biological activity. J Antibiot (Tokyo) 1988;9:1205–1211. doi: 10.7164/antibiotics.41.1205. [DOI] [PubMed] [Google Scholar]
  • 86.Jackson M., Karwowski J.P., Theriault R.J., Fernandes P.B., Semon R.C., Kohl W.L. Coloradocin, an antibiotic from a new Actinoplanes. I. Taxonomy, fermentation and biological properties. J Antibiot (Tokyo) 1987;40:1375–1382. doi: 10.7164/antibiotics.40.1375. [DOI] [PubMed] [Google Scholar]
  • 87.Parenti F., Beretta G., Berti M., Arioli V. Teichomycins, new antibiotics from Actinoplanes techomyceticus nov. sp. I. Description of the producer strain, fermentation studies and biological properties. J Antibiot (Tokyo) 1978;XXXI:276–283. doi: 10.7164/antibiotics.31.276. [DOI] [PubMed] [Google Scholar]
  • 88.Parenti F., Pagani H., Beretta G. Lipiarmycin, a new antibiotic from Actinoplanes. I. Description of the producer strain and fermentation studies. J Antibot (Tokyo) 1975;4:247–252. doi: 10.7164/antibiotics.28.247. [DOI] [PubMed] [Google Scholar]
  • 89.Itoh Y., Torikata A., Katayama C., Haneishi T., Arai M. Candiplanecin, a new antibiotic from Ampullariella regularis subsp. mannitophila subsp. nov. II. Isolation, physico-chemical characterization and biological activities. J Antibiot (Tokyo) 1981;34:934–937. doi: 10.7164/antibiotics.34.934. [DOI] [PubMed] [Google Scholar]
  • 90.Takasawa S., Kawamoto I., Okachi R., Kohakura M., Yahashi R., Nara T. A new antibiotic victomycin (XK 49-1-B-2). II. Isolation, purification and physiochemical and biological properties. J Antibiot (Tokyo) 1975;XXVIII:366–371. doi: 10.7164/antibiotics.28.366. [DOI] [PubMed] [Google Scholar]
  • 91.Pandey R.C., Toussaint M.W., McGuire J.C., Thomas M.C. Maggiemycin and anhyromaggiemycin: two novel anthracyclinone antitumor antibiotics: isolation, structures, partial synthesis and biological properties. J Antibiot (Tokyo) 1989;42:1567–1577. doi: 10.7164/antibiotics.42.1567. [DOI] [PubMed] [Google Scholar]
  • 92.Tokoro Y., Isoe T., Shindo K. Gilvusmycin, a new antitumor antibiotic related to CC-1065. J Antibiot (Tokyo) 1999;52:263–268. doi: 10.7164/antibiotics.52.263. [DOI] [PubMed] [Google Scholar]
  • 93.Umezawa I., Komiyama K., Oka H., Okada K., Tomisaka S., Miyano T., Takano S. A new antibiotic, kazusamycin. J Antibiot (Tokyo) 1984;37:706–711. doi: 10.7164/antibiotics.37.706. [DOI] [PubMed] [Google Scholar]
  • 94.Komiyama K., Funayama S., Anraku Y., Ishibashi M., Takahashi Y., Kawakami T., Omura S. A new antibiotic, Okicenone. I. Taxonomy, fermentation, isolation and biological characteristics. J Antibiot (Tokyo) 1991;44:814–818. doi: 10.7164/antibiotics.44.814. [DOI] [PubMed] [Google Scholar]
  • 95.Hanada M., Kaneta K., Nishiyama Y., Hoshino Y., Konishi M., Oki T. Hydramycin: a new antitumor antibiotic. Taxonomy, isolation, physico-chemical properties, structure and biological activity. J Antibiot (Tokyo) 1991;44:824–831. doi: 10.7164/antibiotics.44.824. [DOI] [PubMed] [Google Scholar]
  • 96.Schneider A., Spath J., Mack S.B., Zeeck A. New cineromycins and musacins obtained by metabolite pattern analysis of Streptomyces griseoviridis (FH-S1832). II. Structure elucidation. J Antibiot (Tokyo) 1996;49:438–446. doi: 10.7164/antibiotics.49.438. [DOI] [PubMed] [Google Scholar]
  • 97.Stephan H., Kempter C., Metzger J.W., Jung G., Potterat O., Pfefferle C., Fiedler H.P. Kanchanamycins, a new polyol macrolide antibiotics produced by Streptomyces olivaceus Tu 4018. II. Structure elucidation. J Antibiot (Tokyo) 1996;49:765–769. doi: 10.7164/antibiotics.49.765. [DOI] [PubMed] [Google Scholar]
  • 98.Fiedler P.H., Rohr J., Zeeck A. Elloramycins B, C, D, E and F: Minor congeners of the elloramycin producer Streptomyces olivaceus. J Antibiot (Tokyo) 1986;6:856–859. doi: 10.7164/antibiotics.39.856. [DOI] [PubMed] [Google Scholar]
  • 99.Yokomizo K., Miyamoto Y., Nagao K., Kumagae E., Habib E.S.E., Suzuki K., Harada S., Uyeda M. Fattiviracin A1, a novel antiviral agent produced by Streptomyces microflavus strain no. 2445. II. Biological properties. J Antibiot (Tokyo) 1998;51:1035–1039. doi: 10.7164/antibiotics.51.1035. [DOI] [PubMed] [Google Scholar]
  • 100.Reis S.A., Moussatche N., Damaso C.R. FK506, a secondary metabolite produced by Streptomyces, presents a novel antiviral activity against orthopoxvirus infection in cell culture. J Appl Microbiol. 2006;100:1373–1380. doi: 10.1111/j.1365-2672.2006.02855.x. [DOI] [PubMed] [Google Scholar]
  • 101.Pamoukian C.R.D., Facciotti M.C.R. Production of the antitumoral retamycin during continuous fermentations of Streptomyces olindensis. Biochem. 2004;39:2249–2255. doi: 10.1385/abab:112:2:111. [DOI] [PubMed] [Google Scholar]
  • 102.Thiericke R., Zeeck A. Biosynthesis of manumycin: Origin of the polyene chains. J Antibiot (Tokyo) 1988;5:694–696. doi: 10.7164/antibiotics.41.694. [DOI] [PubMed] [Google Scholar]
  • 103.Heinstein P. Mechanism of action of granaticin: Inhibition of ribosomal RNA maturation and cell cycle specificity. J Pharm Sci. 1981;71:197–200. doi: 10.1002/jps.2600710215. [DOI] [PubMed] [Google Scholar]
  • 104.James P.D., Edwards C., Dawson M. The effects of temperature, pH and growth rate on secondary metabolism in Streptomyces thermoviolaceus grown in a chemostat. J Gen Microbiol. 1991;137:1715–1720. doi: 10.1099/00221287-137-7-1715. [DOI] [PubMed] [Google Scholar]
  • 105.Recio E., Colinas A., Rumbero A., Aparicio J.F., Martin J.F. PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J Biol Chem. 2004;279:41586–41593. doi: 10.1074/jbc.M402340200. [DOI] [PubMed] [Google Scholar]
  • 106.Prikrylova V., Samoukina G.V., Kandybin N.V., Ujhelyiova L., Varkonda K. Pesticidal activity of virginiamycins S1 and M1. Folia Microbiol (Praha) 1992;37:386–388. doi: 10.1007/BF02815668. [DOI] [PubMed] [Google Scholar]
  • 107.Rezanka T., Vancurova I., Kristufek V., Koza T., Caslavska J., Prikrylova V., Blumauerova M. Taxonomic studies of Streptomyces virginiae mutants overproducing virginiamycin M1. Folia Microbiol (Praha) 1992;37:105–110. doi: 10.1007/BF02836613. [DOI] [PubMed] [Google Scholar]
  • 108.Wezel G.P., Krabben P., Traag B.A., Keijser B.J.F., Kerste R., Vijgenboom E., Heijnen J.J., Kraal B. Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl Environ Micobiol. 2006;72:5283–5288. doi: 10.1128/AEM.00808-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 109.Hiquashide E., Hatano K., Shibata M., Nakazawa K. Enduracidin, a new antibiotic. I. Streptomyces fungicidicus No.B5477, an enduracidin producing organism. J Antibiot (Tokyo) 1968;21:126–137. [PubMed] [Google Scholar]
  • 110.Xu M., Zhu Y., Jin Z., Wu H., Li X., Yanq Y., Jiao R., Jianq W., Wu H., Tian W., Bai X., Zha O. Glycine origin of the methyl subsituent on C7’-N of octodiose for the biosynthesis of apramycin. Sci China C Life Sci. 2006;49:362–369. doi: 10.1007/s11427-006-2009-y. [DOI] [PubMed] [Google Scholar]
  • 111.Remsinq L.L., Gonzalez A.M., Nur-e-Alam M., Fernandez-Lozano M.J., Brana A.F., Rix U., Oliveira M.A., Mendez C., Salas J.A., Rohr J. Mithramycin SK, a novel antitumor drug with improved therapeutic index, mithramycin SA and demycarosyl-mithramycin SK: three new products generated in the mithramycin producer Streptomyces argillaceus through combinatorial biosynthesis. J Am Chem Soc. 2003;125:5745–5753. doi: 10.1021/ja034162h. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Zhanq Q., Gould S.J., Zabriskie T.M. A new cytosine glycoside from Streptomyces griseochromogenes produced by the use of in vivo of enzyme inhibitors. J Nat Prod. 1998;61:648–651. doi: 10.1021/np970468o. [DOI] [PubMed] [Google Scholar]
  • 113.Hu Z., Reid R., Gramajo H. The leptomycin gene cluster and its heterologus expression in Streptomyces lividans. J Antibiot (Tokyo) 2005;58:625–633. doi: 10.1038/ja.2005.86. [DOI] [PubMed] [Google Scholar]
  • 114.Zhu L., Ostah B., Rix U., Nur-E-Alam M., Mayers A., Luzhetskyy A., Mendez C., Salas J.A., Bechthold A., Fedorenko V., Rohr J. Identification of the function of gene lndM2 encoding a bifunctional oxygenase-reductase involved in the biosynthesis of the antitumor antibiotic landomycin E by Streptomyces globisporus 1912 supports the originally assigned structure for landomycinone. J Org Chem. 2005;70:631–638. doi: 10.1021/jo0483623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Durr C., Schnell H.J., Luzhetskyy A., Murillo R., Weber M., Welzel K., Vente A., Bechthold A. Biosynthesis of the terpene phenalinolactone in Streptomyces sp. Tu6071: Analysis of the gene cluster and generation of derivatives. Chem Biol. 2006;13:365–377. doi: 10.1016/j.chembiol.2006.01.011. [DOI] [PubMed] [Google Scholar]
  • 116.Uchihata Y., Ando N., Ikeda Y., Kondo S., Hamada M., Umezawa K. Isolation of a novel cyclic hexadepsipeptide pipalamycin from Streptomyces as an apoptosis inducing agent. J Antibiot (Tokyo) 2002;55:1–5. doi: 10.7164/antibiotics.55.1. [DOI] [PubMed] [Google Scholar]
  • 117.Ezaki M., Iwami M., Yamashita M., Hashimoto S., Komori T., Umehara K., Mine Y., Kohsaka M., Aoki H., Imanaka H. Biphenomycin A and B, novel peptide antibiotics. I. Taxonomy, fermentation, isolation and characterization. J Antibiot (Tokyo) 1985;38:1453–1461. doi: 10.7164/antibiotics.38.1453. [DOI] [PubMed] [Google Scholar]
  • 118.Gebhardt K., Pukall R., Fiedler H.P. Streptocidins AD, novel cyclic decapeptide antibiotics produced by Streptomyces sp. Tu6071. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo) 2001;54:428–433. doi: 10.7164/antibiotics.54.428. [DOI] [PubMed] [Google Scholar]
  • 119.Zhang H., Tomodo H., Tabata N., Oohori M., Shinose M., Takahashi Y., Omura S. Zelkovamycin, a new cyclic peptide antibiotic from Streptomyces sp. K96-0670. I. Production, isolation and biological activities. J Antibiot (Tokyo) 1999;52:29–33. doi: 10.7164/antibiotics.52.29. [DOI] [PubMed] [Google Scholar]
  • 120.Gonzalez Holgado G., Castro Rodriguez J., Canedo Hernandez L.M., Diaz M., Fernandes-Abalos J.M., Trujillano I., Santamari R.I. Radamycin, a novel thiopeptide produced by Streptomyces sp. RSP9. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo) 2002;54:383–390. doi: 10.7164/antibiotics.55.383. [DOI] [PubMed] [Google Scholar]
  • 121.Sohda K.Y., Nagai K., Yamori T., Suzuki K., Tanaka A. YM216391, a novel cytotoxic cyclic peptide from Streptomyces nobilis. I. Fermentation, isolation and biological activities. J Antibiot (Tokyo) 2005;58:27–31. doi: 10.1038/ja.2005.2. [DOI] [PubMed] [Google Scholar]
  • 122.Toki S., Agatsuma T., Ochiai K., Saitoh Y., Ando K., Nakanishi S., Lokker N.A., Giese N.A., Matsuda Y. RP-1776, a novel cyclic peptide produced by Streptomyces sp., inhibits the binding of PDGF to the extracellular domain of its receptor. J Antibiot (Tokyo) 2001;54:405–414. doi: 10.7164/antibiotics.54.405. [DOI] [PubMed] [Google Scholar]
  • 123.Ubukata M., Shiraishi N., Kobinata K., Kudo T., Yamaguchi I., Osada H., Shen Y.C., Isono K. RS-22 A, B and C: new macrolide antibiotics from Streptomyces violaceusniger. I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo) 1995;48:289–92. doi: 10.7164/antibiotics.48.289. [DOI] [PubMed] [Google Scholar]
  • 124.Shindo K., Kamishohara M., Odagawa A., Matsuoka M., Kawai H. Vicenistatin, a novel 20-membered macrocyclic lactam antitumor antibiotic. J Antibiot (Tokyo) 1993;46:1076–1081. doi: 10.7164/antibiotics.46.1076. [DOI] [PubMed] [Google Scholar]
  • 125.Bertasso M., Holzenkampfer M., Zeeck A., Stackebrandt E., Beil W., Fiedler H.P. Ripromycin and other polycyclic macrolactams from Streptomyces sp. Tu6239. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo) 2003;56:364–371. doi: 10.7164/antibiotics.56.364. [DOI] [PubMed] [Google Scholar]
  • 126.Igarashi M., Shida T., Sasaki Y., Kinoshita N., Naganawa H., Hamada M., Takeuchi T. Vinylamycin, a new depsipeptide antibiotic from Streptomyces sp. J Antibiot (Tokyo) 1999;52:873–879. doi: 10.7164/antibiotics.52.873. [DOI] [PubMed] [Google Scholar]
  • 127.Jacks T.M., Schleim K.D., Judith F.R., Miller B.M. Cephamycin C treatment of induced enterotoxigenic colibacillosis (scours) in calves and piglets. Antibiot Chemother. 1980;18:397–402. doi: 10.1128/aac.18.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Challis G.L., Hopwood D.A. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Prod Nat Acad Sci USA. 2003;100:14555–14561. doi: 10.1073/pnas.1934677100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 129.Watve M.S., Tckoo R., Jog M.M., Bhole B.D. How many antibiotics are produced by the genus Streptomyces? Arch Microbiol. 2001;176:386–390. doi: 10.1007/s002030100345. [DOI] [PubMed] [Google Scholar]
  • 130.Williams ST, Sharpe ME and Holt JG (1989) Bergey’s manual of systematic bacteriology, Vol. 4
  • 131.Carlos F (2003) Multiple drug resistant bacteria. Horizon, Scientific Press
  • 132.Ekwenye U.N., Kazi E. Investigation of plasmid DNA and antibiotic resistance in some pathogenic organism. Afr J Biotechnol. 2007;6:877–880. [Google Scholar]
  • 133.Lam K.S. Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol. 2006;9:245–251. doi: 10.1016/j.mib.2006.03.004. [DOI] [PubMed] [Google Scholar]
  • 134.Fenical W., Jensen P.R. Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol. 2006;2:666–673. doi: 10.1038/nchembio841. [DOI] [PubMed] [Google Scholar]
  • 135.Ward A.C., Bora N. Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol. 2006;9:279–286. doi: 10.1016/j.mib.2006.04.004. [DOI] [PubMed] [Google Scholar]
  • 136.Salmon C.E., Magarvey N.A., Sherman D.H. Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep. 2003;21:105–121. doi: 10.1039/b301384g. [DOI] [PubMed] [Google Scholar]
  • 137.Helmke E., Weyland H. Rhodococcus marinonascens sp. nov; an actinomycete from the sea. Int J Syst Bacteriol. 1983;34:127–138. doi: 10.1099/00207713-34-2-127. [DOI] [Google Scholar]
  • 138.Wu Z., Xie L., Xia G., Zhanq J., Nie Y., Hu J., Wanq S., Zhanq R. A new tetrodotoxin producing actinomycete Nocardiopsis dassonvillei isolated from the ovaries of puffer fish Fugu rubripes. Toxicon. 2005;45:851–859. doi: 10.1016/j.toxicon.2005.02.005. [DOI] [PubMed] [Google Scholar]
  • 139.Stach J.E., Maldonado L.A., Ward A.C., Goodfellow M., Bull A.T. New primers for the class actinobacteria: application to marine and terrestrial environments. Environ Microbiol. 2003;5:828–841. doi: 10.1046/j.1462-2920.2003.00483.x. [DOI] [PubMed] [Google Scholar]
  • 140.Mincer T.J., Fenical W., Jensen P.R. Culture dependent and culture independent diversity within the obligate marine actinomycete genus Salinispora. Appl Environ Microbiol. 2005;71:7019–7028. doi: 10.1128/AEM.71.11.7019-7028.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141.Tringe S.G., Mering C., Kobayashi A., Salamov A.A., Chen K., Cheng H.W., Podar M., Short J.M., Mathur E.J., Detter J.C. Comparative metagenomics of microbial communities. Science. 2005;308:554–557. doi: 10.1126/science.1107851. [DOI] [PubMed] [Google Scholar]
  • 142.Cho J.Y., Kwon H.C., Williams P.G., Jensen P.R., Fenical W. Azamerone, a terpenoid phthalazinone from a marine derived bacterium related to the genus Streptomyces (Actinomycetales) Org Lett. 2006;8:2471–2474. doi: 10.1021/ol060630r. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 143.Macherla V.R., Liu J., Bellows C., Teisan S., Nicholson B., Lam K.S., Potts B.C.M. Glaciapyrroles A, B and C pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment. J Nat Prod. 2005;68:780–783. doi: 10.1021/np049597c. [DOI] [PubMed] [Google Scholar]
  • 144.Wu S.J., Fotso S., Li F., Qin S., Laatsch H. Amorphane sesquiterpenes from a marine Streptomyces sp. J Nat Prod. 2007;70:304–306. doi: 10.1021/np050358e. [DOI] [PubMed] [Google Scholar]
  • 145.Hardt I.H., Jensen P.R., William F. Neomarinone and new cytotoxic marinone derivatives, produced by a marine filamentous bacterium (Actinomycetales) Science. 2000;41:2073–2076. [Google Scholar]
  • 146.William P.G., Asolkar R.N., Kondratyuk T., Pezzuto J.M., Jensen P.R., Fenical W. Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola. J Nat Prod. 2007;70:83–88. doi: 10.1021/np0604580. [DOI] [PubMed] [Google Scholar]
  • 147.Jensen P.R., Williams P.G., Oh D.C., Zeigler L., Fenical W. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol. 2007;73:1146–1152. doi: 10.1128/AEM.01891-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 148.Bister B., Bischoff D., Strobele M., Riedlinger J., Reicke A., Wolter F., Bull A.T., Zahner H., Fiedler H.P., Sussmuth R.D. Abyssomicin C a polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Chem Int Ed. 2004;43:2574–2576. doi: 10.1002/anie.200353160. [DOI] [PubMed] [Google Scholar]
  • 149.Sujatha P., Bapi Raju K.V., Ramana T. Studies on a new marine Streptomycete BT 408 producing polyketide antibiotic SBR-22 effective against methicillin resistant Staphylococcus aureus. Microbiol Res. 2005;160:119–126. doi: 10.1016/j.micres.2004.10.006. [DOI] [PubMed] [Google Scholar]
  • 150.Asolkar R.N., Jensen P.R., Kauffman C.A., Fenical W. Daryamides A-C weakly cytotoxic polyketides from a marine derived actinomycete of the genus Streptomyces strain CNQ-085. J Nat Prod. 2006;69:1756–1759. doi: 10.1021/np0603828. [DOI] [PubMed] [Google Scholar]
  • 151.Cho J.Y., Kwon H.C., Williams P.G., Kauffman C.A., Jensen P.R., Fenical W. Actinofuranones A and B, polyketides from a marine derived bacterium related to the genus Streptomyces (Actinomycetales) J Nat Prod. 2006;69:425–428. doi: 10.1021/np050402q. [DOI] [PubMed] [Google Scholar]
  • 152.Kanoh K., Matsuo Y., Adachi K., Imagawa H., Nishizawa M., Shizuri Y. Mechercharmycins A and B cytotoxic substances from marine derived Thermoactinomyces sp. YM 3-251. J Antibiot (Tokyo) 2005;58:289–292. doi: 10.1038/ja.2005.36. [DOI] [PubMed] [Google Scholar]
  • 153.Romero F., Espliego F., Perez Baz J., Garcia de Quesada T., Gravalos D., Calle F., Fernandez Puentes J.L. Thiocoraline a new depsipeptide with antitumor activity produced by a marine Micromonospora. Taxonomy, fermentation isolation and biological activities. J Antibiot (Tokyo) 1997;50:734–737. doi: 10.7164/antibiotics.50.734. [DOI] [PubMed] [Google Scholar]
  • 154.Renner M.K., Shen Y.C., Cheng X.C., Jensen P.R., Frankmoelle W., Kauffman C.A., Fenical W., Lobkovsky E., Cladry J. Cyclomarins A-C, new anti inflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.) J Am Chem Soc. 1999;121:11273–11276. doi: 10.1021/ja992482o. [DOI] [Google Scholar]
  • 155.Miller E.D., Kauffman C.A., Jensen P.R., Fenical W. Piperazimycins cytotoxic hexadepsipeptides from a marine derived bacterium of the genus Streptomyces. J Org Chem. 2007;72:323–330. doi: 10.1021/jo061064g. [DOI] [PubMed] [Google Scholar]
  • 156.Lee H.S., Shin H.J., Jang K.H., Kim T.S., Oh K.B., Shin J. Cyclic peptides of the Nocardamine class from a marine derived bacterium of the genus Streptomyces. J Nat Prod. 2005;68:623–625. doi: 10.1021/np040220g. [DOI] [PubMed] [Google Scholar]
  • 157.Matsuo Y., Kanoh K., Yamori T., Kasai H., Katsuta A., Adachi K., Shin-Ya K., Shizuri Y. Urukthapelstatin A, a novel cytotoxic substance from a marine derived Mechercharimyces asporophorigenes YM11-542. J Antibiot (Tokyo) 2007;60:251–255. doi: 10.1038/ja.2007.30. [DOI] [PubMed] [Google Scholar]
  • 158.Moore B.S., Trischman J.A., Seng D., Kho D., Jensen P.R., Fenical W. Salinamides, anti-inflammatory depsipeptides from a marine Streptomycete. J Org Chem. 1999;64:1145–1150. doi: 10.1021/jo9814391. [DOI] [Google Scholar]
  • 159.Stritzke K., Schulz S., Laatsch H., Helmke E., Beil W. Novel caprolactones from a marine Streptomycete. J Nat Prod. 2004;67:395–401. doi: 10.1021/np030321z. [DOI] [PubMed] [Google Scholar]
  • 160.Li D.H., Zhu T.J., Liu H.B., Fanq Y.C., Gu O.O., Zhu W.M. Four butenolides are novel cytotoxic compounds isolated from the marine derived bacterium, Streptoverticillium luteoverticillatum 11014. Arch Pharm Res. 2006;29:624–626. doi: 10.1007/BF02968245. [DOI] [PubMed] [Google Scholar]
  • 161.Malet Cascon L., Romero F., Espliego Vazquez F., Gravalos D., Fernandez Puentes J.L. IB00208, a new cytotoxic polycyclic xanthone produced by a marine derived Actinomadura. Isolation of the strain, taxonomy and biological activities. J Antibiot (Tokyo) 2003;56:219–225. doi: 10.7164/antibiotics.56.219. [DOI] [PubMed] [Google Scholar]
  • 162.Hayakawa Y., Shirasaki S., Shiba S., Kawasaki T., Matsuo Y., Adachi K., Shizuri Y. Piericidins C7 and C8, new cytotoxic antibiotics produced by a marine Streptomyces sp. J Antibiot (Tokyo) 2007;60:196–200. doi: 10.1038/ja.2007.22. [DOI] [PubMed] [Google Scholar]
  • 163.Shiono Y., Shiono N., Seo S., Oka S., Yamazaki Y. Effects of polyphenolic anthrone derivatives resistomycin and hypericin on apoptois in human megakaryoblastic leukemia CMK-7cell2. Natuforsch. 2002;57:923–929. doi: 10.1515/znc-2002-9-1028. [DOI] [PubMed] [Google Scholar]
  • 164.Adinaryan G., Venkateshan M.R., Bpiraju V.V., Sujatha P., Premkumar J., Ellaiah P., Zeeck A. Cytotoxic compounds from the marine actinobacterium. Bio Org Khim. 2006;32:328–334. doi: 10.1134/s1068162006030125. [DOI] [PubMed] [Google Scholar]
  • 165.Kock I., Maskey R.P., Biabani M.A.F., Helmke E., Laatsch H. 1-hydroxy-1-norresistomycin and resistoflavine methyl ether new antibiotics from marine derived Streptomycetes. J Antibiot (Tokyo) 2005;58:530–534. doi: 10.1038/ja.2005.73. [DOI] [PubMed] [Google Scholar]
  • 166.Gorajana A, MV, Vinjamuri S, Kurada BV, Peela S, Jangam P, Poluri E and Zeeck A (2006) Resistoflavine cytotoxic compound from a marine actinomycete, Streptomyces chibaensis AUBN(1)/7. Microbiol Res 29 [DOI] [PubMed]
  • 167.Itoh T., Kinoshita M., Aoki S., Kobayashi M. Komodoquinone A, a novel neuritogenic anthracycline from marine Streptomyces sp. KS3. J Nat Prod. 2003;66:1373–1377. doi: 10.1021/np030212k. [DOI] [PubMed] [Google Scholar]
  • 168.Maskey R.P., Helmke E., Laatsch H. Himalomycin A and B isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J Antibiot (Tokyo) 2003;56:942–949. doi: 10.7164/antibiotics.56.942. [DOI] [PubMed] [Google Scholar]
  • 169.Asolkar R.N., Schroder D., Heckmann R., Lang S., Dobler I.W., Laatsch H. Helquinoline, a new tetrahydroquinoline antibiotic from Janibacter limosus Hel1. J Antibiot (Tokyo) 2004;57:17–23. doi: 10.7164/antibiotics.57.17. [DOI] [PubMed] [Google Scholar]
  • 170.Mercado I.E.S., Davo A.P., Jensen P.R., Fenical W. Antibiotic terpenoid chloro-dihydroquinones from a new marine actinomycete. J Nat Prod. 2005;68:904–910. doi: 10.1021/np058011z. [DOI] [PubMed] [Google Scholar]
  • 171.Williams P.G., Miller E.D., Asolkar R.N., Jensen P.R., Fenical W. Arenicolides A-C, 26 membered ring macrolides from the marine actinomycete Salinispora arenicola. J Org Chem. 2007;72:5025–5034. doi: 10.1021/jo061878x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Kwon H.C., Kauffman C.A., Jensen P.R., Fenical W. Marinomycins A-D antitumor antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinispora”. J Am Chem Soc. 2006;128:1622–32. doi: 10.1021/ja0558948. [DOI] [PubMed] [Google Scholar]
  • 173.Liu R., Zhu T., Li D., Gu J., Xia W., Fang Y., Liu H., Zhu W., Gu Q. Two indolocarbazole alkaloids with apoptosis activity from a marine derived actinomycete Z2039-2. Arch Pharm Res. 2007;30:270–274. doi: 10.1007/BF02977605. [DOI] [PubMed] [Google Scholar]
  • 174.Schumacher R.W., Talmage S.C., Miller S.A., Sarris K.E., Davidson B.S., Goldberg A. Isolation and structure determination of an antimicrobial ester from a marine sediment derived bacterium. J Nat Prod. 2003;66:1291–1293. doi: 10.1021/np020594e. [DOI] [PubMed] [Google Scholar]
  • 175.Li F., Maskey R.P., Qin S., Sattler I., Fiebig H.H., Maier A., Zeeck A., Laatsch H. Chinikomycins A and B Isolation, structure elucidation and biological activity of novel antibiotics from a marine Streptomyces sp. isolate MO45. J Nat Prod. 2005;68:349–353. doi: 10.1021/np030518r. [DOI] [PubMed] [Google Scholar]
  • 176.Maskey R.P., Helmke E., Kayser O., Fiebig H.H., Maier A., Busche A., Laatsch H. Anticancer and antibacterial trioxacarcins with high anti-malaria activity from a marine Streptomycete and their absolute stereochemistry. J Antibiot (Tokyo) 2004;57:771–779. doi: 10.7164/antibiotics.57.771. [DOI] [PubMed] [Google Scholar]
  • 177.Jeong S.Y., Shin H.J., Kim T.S., Lee H.S., Park S.K., Kim H.M. Streptokordin a new cytotoxic compound of the methylpyridine class from a marine derived Streptomyces sp. KORDI-3238. J Antibiot (Tokyo) 2006;59:234–240. doi: 10.1038/ja.2006.33. [DOI] [PubMed] [Google Scholar]
  • 178.Feling R.H., et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinispora. Angew Chem Int End Engl. 2003;42:355–357. doi: 10.1002/anie.200390115. [DOI] [PubMed] [Google Scholar]
  • 179.Mitchell S.S., Nicholson B., Teisan S., Lam K.S., Potts B.C. Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus. J Nat Prod. 2004;67:1400–1402. doi: 10.1021/np049970g. [DOI] [PubMed] [Google Scholar]
  • 180.Imada C., Simidu U. Isolation and characterization of an alpha amylase inhibitor producing actinomycete from marine environment. Nippon Suisan Gakkaishi. 1988;54:1839–1845. [Google Scholar]
  • 181.Aoyama T., Kojima F., Imada C., Muraoka Y., Naqanawa H., Okami Y., Takeuchi T., Aoyaqi T. Pyrostatins A and B, new inhibitors of N-acetyl-beta-D-glucosamidase, produced by Streptomyces sp. SA3501. J Enzyme Inhib. 1995;8:223–232. doi: 10.3109/14756369509020129. [DOI] [PubMed] [Google Scholar]
  • 182.Aoyagi T., Hatsu M., Imada C., Naganawa H., Okami Y., Takeuchi T. Pyrizinostatin: a new inhibitor of pyroglutamyl peptidase. J Antibiot (Tokyo) 1992;45:1795–1796. doi: 10.7164/antibiotics.45.1795. [DOI] [PubMed] [Google Scholar]
  • 183.Wendt K.U., Schulz G.E. Isoprenoid biosynthesis: manifold chemistry catalyzed by similar enzymes. Structure. 1998;6:127–133. doi: 10.1016/S0969-2126(98)00015-X. [DOI] [PubMed] [Google Scholar]
  • 184.Hoeksema H., Smith C.G. Novobiocin. Prog Ind Microbiol. 1961;3:91–139. [PubMed] [Google Scholar]
  • 185.Kuzuyama T., Seto H. Diversity of the biosynthesis of the isoprene units. Nat Prod Rep. 2003;20:171–183. doi: 10.1039/b109860h. [DOI] [PubMed] [Google Scholar]
  • 186.Uyeda M., Mizukami M., Yokomizo K., Suzuki K. Pentalenolactone I and hygromycin A, immunosuppressants produced by Streptomyces filipinensis and Streptomyces hygroscopicus. Biosci Biotechnol Biochem. 2001;65:1252–1254. doi: 10.1271/bbb.65.1252. [DOI] [PubMed] [Google Scholar]
  • 187.Shin-ya K., Shimizu S., Kunigami T., Furihata K., Furihata K., Seto H. a new neuronal cell protecting substance, lavanduquinocin produced by Streptomyces viridochromogenes. J Antibiot (Tokyo) 1995;48:574–578. doi: 10.7164/antibiotics.48.574. [DOI] [PubMed] [Google Scholar]
  • 188.Shiomi K., Iinuma H., Hamada M., Naganawa H., Manabe M., Matsuki C., Takeuchi T., Umezawa H. Novel antibiotics napyradiomycins. Production, isolation, physico-chemical properties and biological activity. J Antibiot (Tokyo) 1986;39:487–493. doi: 10.7164/antibiotics.39.487. [DOI] [PubMed] [Google Scholar]
  • 189.Nakajima M., Okazaki T., Iwado S., Kinoshita T., Haneishi T. New diterpenoid antibiotics spirocardins A and B. J Antibiot (Tokyo) 1989;42:1741–1748. doi: 10.7164/antibiotics.42.1741. [DOI] [PubMed] [Google Scholar]
  • 190.Takahiro E., Yoshiro Y., Tadao K. Synthetic study on radical scavenger benthocyanin A. Nippon Kagakkai Koen Yokoshu. 1999;76:774. [Google Scholar]
  • 191.Lee D.G., Yoo I.D., Kim W.G. Differential antiviral activity of benzastatin C and its dechlorinated derivative from Streptomyces nitrosporeus. Bio Pharm Bull. 2007;30:795–797. doi: 10.1248/bpb.30.795. [DOI] [PubMed] [Google Scholar]
  • 192.Shinya K., Kunigami T., Kim T.S., Furihata K., Hayakawa Y., Seto H. Carquinostatin B, a new neuronal cell protecting substance produced by Streptomyces exfoliatus. Biosci Biotechnol Biochem. 1997;61:1768–1769. doi: 10.1271/bbb.61.1768. [DOI] [PubMed] [Google Scholar]
  • 193.Baizman E., Branstrom A.A., Longley C.B., Allanson N., Sofia M.J., Gange D., Goldman R.C. Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin an inhibitor of bacterial transglycosylase. Microbiology. 2000;146:3129–3140. doi: 10.1099/00221287-146-12-3129. [DOI] [PubMed] [Google Scholar]
  • 194.Liras P., Martin J.F. Gene clusters for β-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate. Int Microbiol. 2006;9:9–19. [PubMed] [Google Scholar]
  • 195.Ghanem N.B., Sabry S.A., El-Sherif Z.M., Abu El-Ela G.A. Isolation and enumeration of marine actinomycetes from seawater and sediments in Alexandria. J Gen Appl Microbiol. 2000;46:105–111. doi: 10.2323/jgam.46.105. [DOI] [PubMed] [Google Scholar]
  • 196.Jensen P.R., Gontang E., Mafnas C., Mincer T.J., Fenical W. Culturable marine actinomycete diversity from tropical Pacific ocean sediments. Environ Microbiol. 2005;7:1039–1048. doi: 10.1111/j.1462-2920.2005.00785.x. [DOI] [PubMed] [Google Scholar]
  • 197.Pisano M.A., Sommer J.A., Branacaccio L. Isolation of bioactive actinomycetes from marine sediments using rifampicin. Appl Microbiol Biotechnol. 2004;31:609–612. doi: 10.1007/BF00270804. [DOI] [Google Scholar]
  • 198.Gillespie D.E., et al. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol. 2002;68:4301–4306. doi: 10.1128/AEM.68.9.4301-4306.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 199.Brady S.F., Chao C.J., Clardy J. Long chain N-acyltyrosine synthases from environmental DNA. Appl Environ Microbiol. 2004;70:6865–6870. doi: 10.1128/AEM.70.11.6865-6870.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 200.Schmeisser C., Steele H., Streit W.R. Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol. 2007;75:955–962. doi: 10.1007/s00253-007-0945-5. [DOI] [PubMed] [Google Scholar]
  • 201.Sharma R., Ranjan R., Kapardar R.K., Grover A. Unculturable bacterial diversity: an untapped resource. Curr Sci. 2005;89:72–77. [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES