Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2009 Jan 8;48(4):438–444. doi: 10.1007/s12088-008-0054-x

Biofilm formation by Candida albicans isolated from intrauterine devices

Priyanka Lal 1, Vishnu Agarwal 1, Parul Pruthi 2, Ben M J Pereira 1, M R Kural 3, Vikas Pruthi 1,
PMCID: PMC3476784  PMID: 23100744

Abstract

Our survey revealed that infected intrauterine devices (IUDs) recovered from patients suffering from reproductive tract infections (RTIs) were tainted with Candida biofilm composed of a single or multiple species. Scanning electron microscopy (SEM) analysis of C. albicans biofilm topography showed that it consists of a dense network of mono- or multilayer of cells embedded within the matrix of extracellular polymeric substances (EPS). Confocal scanning laser microscopy (CSLM) and atomic force microscopy (AFM) images depicted that C. albicans biofilms have a highly heterogeneous architecture composed of cellular and noncellular elements with EPS distributed in the cell-surface periphery or at cell-cell interface. Biochemical analysis showed that EPS produced by C. albicans biofilm contained significantly reduced total carbohydrate (40%), protein (5%) and enhanced amount of hexosamine (4%) in contrast to its planktonic counterparts. The in vitro activity of antifungal agents amphotericin B, nystatin, fluconazole and chlorhexidine against pre-formed C. albicans biofilm, assessed using XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) reduction assay revealed increased resistance of these infectious biofilm (50% reduction in metabolic activity at a concentration of 8, 16, 64, 128 μg/ml respectively) in comparison to its planktonic form.

Keywords: Biofilm, Candida albicans, EPS, XTT

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

References

  • 1.Hsiao Y.C., Sung S.H. Married women’s satisfaction with their choice of contraception. J Nurs Res. 2003;11:119–128. doi: 10.1097/01.jnr.0000347627.34358.7c. [DOI] [PubMed] [Google Scholar]
  • 2.Arancibia V., Pena C., Allen H.E., Lagos G. Characterization of copper in uterine fluids of patients who use the copper T-380A intrauterine device. Clin Chima Acta. 2003;332:69–78. doi: 10.1016/S0009-8981(03)00124-4. [DOI] [PubMed] [Google Scholar]
  • 3.Pál Z., Urbán E., Dósa E., Pál A., Nagy E. Biofilm formation on intrauterine devices in relation to duration of use. J Med Microbiol. 2005;54:1199–1203. doi: 10.1099/jmm.0.46197-0. [DOI] [PubMed] [Google Scholar]
  • 4.Ramage G., Vandewalle K., Wickes B.L., López-Ribot J.L. Characteristics of biofilm formation by Candida albicans. Rev Iberoam Micol. 2001;18:163–170. [PubMed] [Google Scholar]
  • 5.Pruthi V., Al-Janabi A., Pereira B.J. Characterization of biofilm formed on intrauterine devices. Indian J Med Microbiol. 2003;21:161–165. [PubMed] [Google Scholar]
  • 6.Baillie G.S., Douglas L.J. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother. 2000;46:397–403. doi: 10.1093/jac/46.3.397. [DOI] [PubMed] [Google Scholar]
  • 7.McCourtie J., Douglas L.J. Extracellular polymer of Candida albicans: isolation, analysis and role in adhesion. J Gen Microbiol. 1985;131:495–503. doi: 10.1099/00221287-131-3-495. [DOI] [PubMed] [Google Scholar]
  • 8.Chaplin MF and Kennedy JF (1986) Carbohydrate analysis IRL press, Washington DC, USA
  • 9.Ames B.N. Assay of inorganic phosphate, total phosphate and phosphatases. In: Neufeld E.F., Ginsburg V., editors. Methods in enzymology Vol. 8: Complex carbohydrates. New York: Academic Press; 1966. pp. 115–118. [Google Scholar]
  • 10.Hawser S.P., Douglas L.J. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 1994;62:915–921. doi: 10.1128/iai.62.3.915-921.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ramage G., Saville S.P., Thomas D.P., López-Ribot J.L. Candida biofilms: an update. Eukaryot Cell. 2005;4:633–638. doi: 10.1128/EC.4.4.633-638.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Pfaller M.A., Houston A., Coffmann S. Application of CHROMagar Candida for rapid screening of clinical specimens for Candida albicans, Candida tropicalis, Candida krusei, and Candida (Torulopsis) glabrata. J Clin Microbiol. 1996;34(1):58–61. doi: 10.1128/jcm.34.1.58-61.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Takenaka S., Iwaku M., Hoshino E. Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis. J Infect Chemother. 2001;7:87–93. doi: 10.1007/s101560100014. [DOI] [PubMed] [Google Scholar]
  • 14.http://en.wikipedia.org/wiki/Propidium_iodide
  • 15.Touhami A., Jericho M.H., Boyd J.M., Beveridge T.J. Nanoscale characterization and determination of adhesion forces of Pseudomonas aeruginosa pili by using atomic force microscopy. J Bacteriol. 2006;188(2):370–377. doi: 10.1128/JB.188.2.370-377.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Emerson R.J., Camesano T.A. Nanoscale investigation of pathogenic microbial adhesion to a biomaterial. Appl Environ Microbiol. 2004;70(10):6012–6022. doi: 10.1128/AEM.70.10.6012-6022.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Oh Y.J., Jo W., Yang Y., Park S. Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy. Ultramicroscopy. 2007;107(10–11):869–874. doi: 10.1016/j.ultramic.2007.01.021. [DOI] [PubMed] [Google Scholar]
  • 18.Hawser S.P., Baillie G.S., Douglas L.J. Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol. 1998;47:253–256. doi: 10.1099/00222615-47-3-253. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES