Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2009 Jan 8;48(4):445–452. doi: 10.1007/s12088-008-0055-9

Molecular diversity, effectiveness and competitiveness of indigenous rhizobial population infecting mungbean Vigna radiata (L. Wilczek) under semi-arid conditions

Suman Kundu 1, S S Dudeja 1,
PMCID: PMC3476787  PMID: 23100745

Abstract

Nodules from mungbean crop raised for the first time at Ram Dhan Singh (RDS) farm of Chaudhary Charan Singh (CCS) Haryana Agricultural University, Hisar were collected from 17 different locations. Twenty-five mungbean rhizobia were isolated and authenticated by plant infection test. DNA of all these rhizobia was extracted purified and amplified using enterobacterial repetitive intergenic consensus (ERIC) primers. All the mungbean rhizobial isolates were clustered into 4 groups at 65% of similarity and were further divided into 17 subclusters at 80% of similarity. All the 4 types of rhizobia were not present at any of the location and group 2 or 4 rhizobia were invariably present. Efficacy of these rhizobia in terms of nodulation, nitrogen uptake and chlorophyll a fluorescence was determined under pot culture conditions. Strain MB 307 showed maximum nitrogen uptake of 31.9 mg N plant−1 followed by strain MB 1205, MB 1206(2), MB 308, MB 1524 and strain MB 1521 was found to be the least efficient in terms of N 2 fixation. Nodule occupancy by different rhizobia ranged from 5.5 to 40.3%. Most of the strains belonging to the 2nd group which clustered maximum number of strains were comparatively better competitors and formed 19.5–40.3% of the nodules and were also effective. Isolate MB 307, the most efficient strain, was found to have nodule occupancy of 31.5%. Such type of predominant, efficient and better competitor strains should be selected for enhancing nodule competitiveness.

Keywords: Molecular diversity, Rhizobia, Mungbean, Vigna radiata, Competitiveness, N2 fixation, Symbiosis

Full Text

The Full Text of this article is available as a PDF (795.5 KB).

References

  • 1.Dudeja S.S., Khurana A.L. Survival and competitiveness of Bradyrhizobim spp. in the rhizosphere of pigeonpea (Cajanus cajan). Biol Fertil Soils. 1988;7:63–67. doi: 10.1007/BF00260734. [DOI] [Google Scholar]
  • 2.Dudeja S.S., Khurana A.L., Sharma P.K., Dogra R.C., Garg F.C. Symbiotic effectivity of hup+ and hup−Rhizobium strains on mungbean and urdbean under field conditions. Indian J Microbiol. 1995;35:189–194. [Google Scholar]
  • 3.Khurana A.L., Sharma P.K., Dudeja S.S. Influence of host, moisture and native rhizobial population on nodule occupancy in chickpea (Cicer arietinum) Zentralbl Microbiol. 1991;146:137–141. [Google Scholar]
  • 4.Sheoran A., Khurana A.L., Dudeja S.S. Nodulation competitiveness in the Rhizobium-chickpea nodulation variants symbiosis. Microbiol Res. 1997;152:407–412. [Google Scholar]
  • 5.McInnes A., Thies J.E., Abbott L.K., Howieson J.G. Structure and diversity among rhizobial strains, populations and communities-a review. Soil Biol Biochem. 2004;36:1295–1308. doi: 10.1016/j.soilbio.2004.04.011. [DOI] [Google Scholar]
  • 6.Chen W.M., Moulin L., Bontemps C., Vandamme P., Béna G., Boivin-Masson C. Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature. J Bacteriol. 2003;185:7266–7272. doi: 10.1128/JB.185.24.7266-7272.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Laguerre G., Louvrier P., Allard M.R., Amarger N. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes. Appl Environ Microbiol. 2003;69:2276–2283. doi: 10.1128/AEM.69.4.2276-2283.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Rodriguez-Echeverria S., Perez-Fernandez M.A., Vlaar S., Finnan T. Analysis of the legume-rhizobia symbiosis in shrubs from central western Spain. J Appl Microbiol. 2003;95:1367–1374. doi: 10.1046/j.1365-2672.2003.02118.x. [DOI] [PubMed] [Google Scholar]
  • 9.Rosenblueth M., Martinez-Romero E. Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol. 2004;181:337–344. doi: 10.1007/s00203-004-0661-9. [DOI] [PubMed] [Google Scholar]
  • 10.Safronova V.I., Piluzza G., Belimov A.A., Bullitta S. Phenotypic and genotypic analysis of rhizobia isolated from pasture legumes native of Sardinia and Asinara Island. Antonie van Leeuwenhoek. 2004;85:115–127. doi: 10.1023/B:ANTO.0000020278.58236.77. [DOI] [PubMed] [Google Scholar]
  • 11.Bromfield E.S.P., Barran L.R., Wheatcroft R. Relative genetic structure of a population of Rhizobium meliloti isolated directly from soil and from nodules of alfalfa (Medicago sativa) and sweet clover (Melilotus alba) Mol Ecol. 1995;4:183–188. doi: 10.1111/j.1365-294X.1995.tb00207.x. [DOI] [Google Scholar]
  • 12.Hartmann A., Giraud J.J., Catroux G. Genotypic diversity of Sinorhizobium (formerly Rhizobium) meliloti strains isolated directly from a soil and from nodules of alfalfa (Medicago sativa) grown in the same soil. FEMS Microbiol Ecol. 1998;25:107–116. doi: 10.1016/S0168-6496(97)00087-1. [DOI] [Google Scholar]
  • 13.Velasquez E., Mateos P.F., Velasco N., Santos F., Burgos P.A., Villadas P., Toro N., Martinez-Molina E. Symbiotic characteristics and selection of autochthonous strains of Sinorhizobium meliloti populations in different soil. Soil Biol Biochem. 1999;31:1039–1047. doi: 10.1016/S0038-0717(99)00018-8. [DOI] [Google Scholar]
  • 14.Leung K., Wanjage F.N., Bottomley P.J. Symbiotic characteristics of Rhizobium leguminosarum bv. ittrifolii isolates which represent major and minor nodule-occupying chromosomal types of field-grown subclover (Trifolium subterraneum L.) Appl Environ Microbiol. 1994;60:427–433. doi: 10.1128/aem.60.2.427-433.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Moawad H.A., Ellis W.R., Schmidt E.L. Rhizosphere response as a factor in competition among three serogroups of indigenous Rhizobium japonicum for nodulation of field-grown soybeans. Appl Environ Microbiol. 1984;47:607–612. doi: 10.1128/aem.47.4.607-612.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Robert F.M., Schmidt E.L. Response of three indigenous serogroups of Rhizobium japonicum to the rhizosphere of pre-emergent seedlings of soybean. Soil Biol Biochem. 1985;17:579–580. doi: 10.1016/0038-0717(85)90029-X. [DOI] [Google Scholar]
  • 17.Bromfield E.S.P., Barran L.R., Prevost D. Is frequency of occurrence of indigenous Rhizobium meliloti in nodules of field grown plants related to intrinsic competitiveness? Soil Biol Biochem. 1989;21:607–609. doi: 10.1016/0038-0717(89)90137-5. [DOI] [Google Scholar]
  • 18.Svenning M.M., Gudmundsson J., Fagerli I.L., Leinonen P. Competition for nodule occupancy between introduced strains of Rhizobium leguminosarum bv. trifolii and its influence on plant production. Ann Bot. 2001;88:781–787. doi: 10.1006/anbo.2001.1484. [DOI] [Google Scholar]
  • 19.Sebbane N., Sahnoune M., Zakhia F., Willems A., Benallaoua S., Lajudie P. Phenotypical and genotypical characteristics of root-nodulating bacteria isolated from annual Medicago spp. in Soummam Valley (Algeria) Lett Appl Microbiol. 2006;42:235–241. doi: 10.1111/j.1472-765X.2005.01846.x. [DOI] [PubMed] [Google Scholar]
  • 20.Vincent J.M. A manual for the practical study of root nodule bacteria. Oxford: Blackwell; 1970. [Google Scholar]
  • 21.Somasegaran P., Hoben H.J. Handbook for rhizobia: Methods in legume-Rhizobium Technology. New York: Springer-Verlag; 1994. [Google Scholar]
  • 22.Dudeja S.S., Chaudhary P. High and low nodulation in relation to molecular diversity of chickpea mesorhizobia in Indian soils. Arch Agron Soil Sci. 2008;54:109–120. doi: 10.1080/03650340701747005. [DOI] [Google Scholar]
  • 23.Rohlf F.J. NTSYS-pc: numerical taxonomy and multivariate analysis system. 5 Version 2.1. Setauket, New York, USA: Exeter Software; 1998. [Google Scholar]
  • 24.Bremner J.M., et al. Total nitrogen. In: Black C.A., et al., editors. Methods of soil analysis. Madison: American Society of Agronomy; 1965. pp. 1149–1178. [Google Scholar]
  • 25.Dudeja S.S., Chaudhary P. Fast chlorophyll fluorescence transient and nitrogen fixing ability of chickpea nodulation variants. Photosynthetica. 2005;43:253–259. doi: 10.1007/s11099-005-0041-y. [DOI] [Google Scholar]
  • 26.Dudeja S.S., Duhan J.S. Biological nitrogen fixation research in pulses with special reference to mungbean and urdbean. Indian J Pulses Research. 2005;18(2):107–118. [Google Scholar]
  • 27.Bruijn F.J. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergenic consensus) sequences and polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 1992;58:2180–2187. doi: 10.1128/aem.58.7.2180-2187.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Vásquez-Arroyo J., Sessitsch A., Martínez E., Peńa-Cabriales J.J. Nitrogen fixation and nodule occupancy by native strains of Rhizobium on different cultivars of common bean (Phaseolus vulgaris L.) Plant and Soil. 1998;204:147–154. doi: 10.1023/A:1004399531966. [DOI] [Google Scholar]
  • 29.Li J., Xu L.M., Fan H., Li L., Ge C., Yang D.S. Genetic diversity of Chinese peanut rhizobia by REP-PCR analysis. Wei Shang Wu Xue Bao. 1999;39:296–304. [PubMed] [Google Scholar]
  • 30.Chen L.S., Figueredo A., Pedrosa F.O., Hungria M. Genetic characterization of soybean rhizobia in Paraguay. Appl Environ Microbiol. 2000;66:5099–5103. doi: 10.1128/AEM.66.11.5099-5103.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Tajima S., Hirashita T., Yoshihara K., Bhromsiri A., Nomura M. Application of repetitive extragenic palindromic (REP)-PCR and enterobacterial repetitive intergenic consensus (ERIC)-PCR analysis to the identification and classification of Japan and Thai local isolates of Bradyrhizobium japonicum, Sinorhizobium meliloti and Rhizobium leguminosarum. Soil Sci Plant Nutr. 2000;46:241–247. [Google Scholar]
  • 32.Saldañ G., Martinez-Alcántara V., Vinardell J.M., Bellogín R., Ruíz-Sainz J.E., Balatti P.A. Genetic diversity of fast-growing rhizobia that nodulate soybean (Glycine max L. Merr) Arch Microbiol. 2003;180:45–52. doi: 10.1007/s00203-003-0559-y. [DOI] [PubMed] [Google Scholar]
  • 33.Yuan T.Y., Yang J.K., Zhang W.T., Zhou J.C. Studies on genetic diversity and phylogeny of slow-growing rhizobia isolated from Vigna radiata at main ecotypes of China. Wei Sheng Wu Xue Bao. 2006;46(6):869–874. [PubMed] [Google Scholar]
  • 34.Doignon-Bourcier F., Willems A., Coopman R., Laguerre G., Gillis M., Lajudie P. Genotypic characterization of Bradyrhizobium strains nodulating small Senegalese legumes by 16S–23S rRNA intergenic gene spacers and amplified fragment length polymorphism fingerprint analyses. Appl Environ Microbiol. 2000;66:3987–3997. doi: 10.1128/AEM.66.9.3987-3997.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Meade J., Higgins P., O’Gara F. Studies on the inoculation and competitiveness of a Rhizobium leguminosarum strain in soils containing indigenous rhizobia. Appl Environ Microbiol. 1985;49:899–903. doi: 10.1128/aem.49.4.899-903.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Dudeja SS, Gupta SC, Majumdar VL and Chaudhary P (2007) Competitiveness of molecularly predominant and host specific chickpea rhizobia under field conditions. In: Vorisek K. et al. (eds) Practical solutions for managing optimum C and N content in agricultural soils IV. International Conference 2007 held at Prague, June 20th–22nd, 2007. Czeck University of Life Sciences and Crop Research Institute, Prague, Czech Republic, pp 38–52

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES