Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1982 Oct;38(1):114–121. doi: 10.1128/iai.38.1.114-121.1982

Oxygen dependence of human alveolar macrophage-mediated antibody-dependent cytotoxicity.

P Conkling, G Papermaster-Bender, M Whitcomb, A L Sagone Jr
PMCID: PMC347705  PMID: 6292091

Abstract

We studied the metabolic characteristics of the human alveolar macrophage-mediated antibody-dependent cytotoxicity (ADCC) reaction, using an anti-D sensitized human erythrocyte target system. Metabolic experiments demonstrated a high resting rate of glucose metabolism in macrophages, but no oxidative metabolic burst was found to accompany the ADCC reaction. These findings were confirmed by oxygen consumption studies, showing a high resting rate of oxygen consumption by macrophages, but no change in the rate of oxygen consumption upon the addition of antibody-sensitized target cells. An anaerobic mechanism for ADCC was anticipated and investigated. Surprisingly, the macrophage-mediated ADCC reaction was found to be highly oxygen dependent. The macrophages of one chronic granulomatous disease patient were also studied and found to have a very low rate of oxidative metabolism in response to phagocytic stimuli. With oxygen present, these macrophages failed to produce significant ADCC, suggesting again that some oxidative mechanism was necessary in the macrophage-mediated ADCC reaction. Various oxygen radical scavengers were also studied. Glutathione inhibited ADCC significantly, and benzoic acid inhibited ADCC only slightly. All other scavengers had no significant inhibitory effect. Then, a known antioxidant and inhibitor of mixed-function oxidases, diethyldithiocarbamate, was found to produce a significant inhibition of the ADCC reaction. We believe this compound may be scavenging or inhibiting the production of some oxygen-dependent species important in the ADCC reaction.

Full text

PDF
114

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
  2. Baehner R. L., Murrmann S. K., Davis J., Johnston R. B., Jr The role of superoxide anion and hydrogen peroxide in phagocytosis-associated oxidative metabolic reactions. J Clin Invest. 1975 Sep;56(3):571–576. doi: 10.1172/JCI108126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baehner R. L., Nathan D. G. Leukocyte oxidase: defective activity in chronic granulomatous disease. Science. 1967 Feb 17;155(3764):835–836. doi: 10.1126/science.155.3764.835. [DOI] [PubMed] [Google Scholar]
  4. Beall G. D., Repine J. E., Hoidal J. R., Rasp F. L. Chemiluminescence by human alveolar macrophages: stimulation with heat-killed bacteria or phorobol myristate acetate. Infect Immun. 1977 Jul;17(1):117–120. doi: 10.1128/iai.17.1.117-120.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Borregaard N., Kragballe K. Role of oxygen in antibody-dependent cytotoxicity mediated by monocytes and neutrophils. J Clin Invest. 1980 Oct;66(4):676–683. doi: 10.1172/JCI109904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boxer L. A., Ismail G., Allen J. M., Baehner R. L. Oxidative metabolic responses of rabbit pulmonary alveolar macrophages. Blood. 1979 Mar;53(3):486–491. [PubMed] [Google Scholar]
  7. Cerottini J. C., Brunner K. T. Cell-mediated cytotoxicity, allograft rejection, and tumor immunity. Adv Immunol. 1974;18:67–132. doi: 10.1016/s0065-2776(08)60308-9. [DOI] [PubMed] [Google Scholar]
  8. Clark R. A., Klebanoff S. J. Studies on the mechanism of antibody-dependent polymorphonuclear leukocyte-mediated cytotoxicity. J Immunol. 1977 Oct;119(4):1413–1418. [PubMed] [Google Scholar]
  9. Gibson D. D., Hornbrook K. R., McCay P. B. Glutathione-dependent inhibition of lipid peroxidation by a soluble, heat-labile factor in animal tissues. Biochim Biophys Acta. 1980 Dec 5;620(3):572–582. doi: 10.1016/0005-2760(80)90149-6. [DOI] [PubMed] [Google Scholar]
  10. Hafeman D. G., Lucas Z. J. Polymorphonuclear leukocyte-mediated, antibody-dependent, cellular cytotoxicity against tumor cells: dependence on oxygen and the respiratory burst. J Immunol. 1979 Jul;123(1):55–62. [PubMed] [Google Scholar]
  11. Haskill J. S., Fett J. W. Possible evidence for antibody-dependent macrophage-mediated cytotoxicity directed against murine adenocarcinoma cells in vivo. J Immunol. 1976 Nov;117(5 PT2):1992–1998. [PubMed] [Google Scholar]
  12. Hohn D. C., Lehrer R. I. NADPH oxidase deficiency in X-linked chronic granulomatous disease. J Clin Invest. 1975 Apr;55(4):707–713. doi: 10.1172/JCI107980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson R. J., Pasternack G. R., Shin H. S. Antibody-mediated suppression of tumor growth. II. Macrophage and platelet cooperation with murine IgG1 isolated from alloantiserum. J Immunol. 1977 Feb;118(2):494–497. [PubMed] [Google Scholar]
  14. Johnston R. B., Jr, Godzik C. A., Cohn Z. A. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978 Jul 1;148(1):115–127. doi: 10.1084/jem.148.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Katz P., Simone C. B., Henkart P. A., Fauci A. S. Mechanisms of antibody-dependent cellular cytotoxicity: the use of effector cells from chronic granulomatous disease patients as investigative probes. J Clin Invest. 1980 Jan;65(1):55–63. doi: 10.1172/JCI109660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Klassen D. K., Sagone A. L., Jr Evidence for both oxygen and non-oxygen dependent mechanisms of antibody sensitized target cell lysis by human monocytes. Blood. 1980 Dec;56(6):985–992. [PubMed] [Google Scholar]
  17. Kohl S., Starr S. E., oleske J. M., Shore S. L., Ashman R. B., Nahmias A. J. Human monocyte-macrophage-mediated antibody-dependent cytotoxicity to herpes simplex virus-infected cells. J Immunol. 1977 Mar;118(3):729–735. [PubMed] [Google Scholar]
  18. Koller C. A., LoBuglio A. F. Monocyte-mediated antibody-dependent cell-mediated cytotoxicity: the role of the metabolic burst. Blood. 1981 Aug;58(2):293–299. [PubMed] [Google Scholar]
  19. Lew P. D., Stossel T. P. Effect of calcium on superoxide production by phagocytic vesicles from rabbit alveolar macrophages. J Clin Invest. 1981 Jan;67(1):1–9. doi: 10.1172/JCI110000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murray H. W., Juangbhanich C. W., Nathan C. F., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. II. The role of oxygen intermediates. J Exp Med. 1979 Oct 1;150(4):950–964. doi: 10.1084/jem.150.4.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Papermaster-Bender G., Whitcomb M. E., Sagone A. L., Jr Characterization of the metabolic responses of the human pulmonary alveolar macrophage. J Reticuloendothel Soc. 1980 Aug;28(2):129–139. [PubMed] [Google Scholar]
  22. Rinehart J. J., Vessella R., Lange P., Kaplan M. E., Gormus B. J. Characterization and comparison of human monocyte- and macrophage-induced tumor cell cytotoxicity. J Lab Clin Med. 1979 Mar;93(3):361–369. [PubMed] [Google Scholar]
  23. Rossi F., Zabucchi G., Dri P., Bellavite P., Berton G. O2- and H2O2 production during the respiratory burst in alveolar macrophages. Adv Exp Med Biol. 1979;121(A):53–74. doi: 10.1007/978-1-4684-3593-1_5. [DOI] [PubMed] [Google Scholar]
  24. Sagone A. L., Jr, King G. W., Metz E. N. A comparison of the metabolic response to phagocytosis in human granulocytes and monocytes. J Clin Invest. 1976 May;57(5):1352–1358. doi: 10.1172/JCI108403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sagone A. L., Jr, Klassen D. K., Decker M. A., Clark L., Metz E. N. Characteristics of the metabolic response of human monocytes to red cells sensitized with anti-D alloantibodies. J Lab Clin Med. 1981 Sep;98(3):382–395. [PubMed] [Google Scholar]
  26. Shin H. S., Kaliss N., Borenstein D., Gately M. K. Antibody-mediated suppression of grafted lymphoma cells. II. Participation of macrophages. J Exp Med. 1972 Aug 1;136(2):375–380. doi: 10.1084/jem.136.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sorrell T. C., Lehrer R. I., Cline M. J. Mechanism of nonspecific macrophage-mediated cytotoxicity: evidence for lack of dependence upon oxygen. J Immunol. 1978 Feb;120(2):347–352. [PubMed] [Google Scholar]
  28. Weiss S. J., King G. W., LoBuglio A. F. Superoxide generation by human monocytes and macrophages. Am J Hematol. 1978;4(1):1–8. doi: 10.1002/ajh.2830040102. [DOI] [PubMed] [Google Scholar]
  29. Whitcomb M. E. Characterization of antibody-dependent cytotoxicity mediated by human alveolar macrophages. Am Rev Respir Dis. 1979 Dec;120(6):1269–1274. doi: 10.1164/arrd.1979.120.6.1269. [DOI] [PubMed] [Google Scholar]
  30. Younes M., Siegers C. P. Mechanistic aspects of enhanced lipid peroxidation following glutathione depletion in vivo. Chem Biol Interact. 1981 Mar 15;34(3):257–266. doi: 10.1016/0009-2797(81)90098-3. [DOI] [PubMed] [Google Scholar]
  31. Zemaitis M. A., Greene F. E. In vivo and in vitro effects of thiuram disulfides and dithiocarbamates on hepatic microsomal drug metabolism in the rat. Toxicol Appl Pharmacol. 1979 Apr;48(2):343–350. doi: 10.1016/0041-008x(79)90041-3. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES