Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1982 Oct;38(1):189–194. doi: 10.1128/iai.38.1.189-194.1982

Effects of ionophores and dicyclohexylcarbodiimide on Mycoplasma gallisepticum adherence to erythrocytes.

M Banai, S Razin, S Schuldiner, D Zilberstein, I Kahane, W Bredt
PMCID: PMC347717  PMID: 7141689

Abstract

To test the influence of the electrochemical ion gradient across mycoplasma membranes on the capacity of organisms to adhere to host cells, Mycoplasma gallisepticum cells were treated with valinomycin, carbonylcyanide m-chlorophenylhydrazone, and N,N'-dicyclohexylcarbodiimide (DCCD) singly or in combination. Uptake of [3H]tetraphenylphosphonium by the treated cells was employed as a measure of the effects of the ionophores on membrane potential. In the absence of K+, valinomycin increased, whereas carbonylcyanide m-chlorophenylhydrazone, and DCCD decreased [3H]tetraphenylphosphonium uptake. However, with a high level of K+ or with DCCD, uptake of [3H]tetraphenylphosphonium in the presence of valinomycin decreased below control levels, indicating that, generally, the ionophores affected membrane potential in the expected manner. The treated organisms were tested for their capacity to attach to glutaraldehyde-fixed human erythrocytes. DCCD was the best inhibitor of mycoplasma attachment, and in combination with valinomycin attachment, capacity decreased by about 40%. The combination of valinomycin plus carbonylcyanide m-chlorophenylhydrazone was less effective; it decreased attachment by about 15 to 25%. It was concluded that the dissipation of ion gradients across cell membranes decreases only partially mycoplasma adherence, in line with previous findings that isolated mycoplasma membranes retain the major part of the attachment capacity of intact cells.

Full text

PDF
189

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abu-Zahr M. N., Butler M. Growth, cytopathogenicity and morphology of Mycoplasma gallisepticum and M. gallinarum in tracheal explants. J Comp Pathol. 1976 Jul;86(3):455–463. doi: 10.1016/0021-9975(76)90014-1. [DOI] [PubMed] [Google Scholar]
  2. Amar A., Rottem S., Razin S. Disposition of membrane proteins as affected by changes in the electrochemical gradient across Mycoplasma membranes. Biochem Biophys Res Commun. 1978 Sep 29;84(2):306–312. doi: 10.1016/0006-291x(78)90171-7. [DOI] [PubMed] [Google Scholar]
  3. Banai M., Kahane I., Feldner J., Razin S. Attachment of killed Mycoplasma gallisepticum cells and membranes to erythrocytes. Infect Immun. 1981 Nov;34(2):422–427. doi: 10.1128/iai.34.2.422-427.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Banai M., Kahane I., Razin S., Bredt W. Adherence of Mycoplasma gallisepticum to human erythrocytes. Infect Immun. 1978 Aug;21(2):365–372. doi: 10.1128/iai.21.2.365-372.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Banai M., Razin S., Bredt W., Kahane I. Isolation of binding sites to glycophorin from Mycoplasma pneumoniae membranes. Infect Immun. 1980 Dec;30(3):628–634. doi: 10.1128/iai.30.3.628-634.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Benyoucef M., Rigaud J. L., Leblanc G. Gradation of the magnitude of the electrochemical proton gradient in Mycoplasma cells. Eur J Biochem. 1981 Jan;113(3):499–506. doi: 10.1111/j.1432-1033.1981.tb05091.x. [DOI] [PubMed] [Google Scholar]
  7. Benyoucef M., Rigaud J. L., Leblanc G. The electrochemical proton gradient in Mycoplasma cells. Eur J Biochem. 1981 Jan;113(3):491–498. doi: 10.1111/j.1432-1033.1981.tb05090.x. [DOI] [PubMed] [Google Scholar]
  8. Bevers E. M., Leblanc G., Le Grimellec C., Op den Kamp J. A., van Deenen L. L. Disposition of phosphatidylglycerol in metabolizing cells of Acholeplasma laidlawii. FEBS Lett. 1978 Mar 1;87(1):49–51. doi: 10.1016/0014-5793(78)80130-6. [DOI] [PubMed] [Google Scholar]
  9. Feldner J., Bredt W., Kahane I. Adherence of erythrocytes to Mycoplasma pneumoniae. Infect Immun. 1979 Jul;25(1):60–67. doi: 10.1128/iai.25.1.60-67.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feldner J., Bredt W., Razin S. Adherence of Mycoplasma pneumoniae to glass surfaces. Infect Immun. 1979 Oct;26(1):70–75. doi: 10.1128/iai.26.1.70-75.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feldner J., Bredt W., Razin S. Role of energy metabolism in Mycoplasma pneumoniae attachment to glass surfaces. Infect Immun. 1981 Jan;31(1):107–113. doi: 10.1128/iai.31.1.107-113.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kahane I., Razin S. Cholesterol-phosphatidylcholine dispersions as donors of cholesterol to Mycoplasma membranes. Biochim Biophys Acta. 1977 Nov 15;471(1):32–38. doi: 10.1016/0005-2736(77)90390-x. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Le Grimellec C., Lajeunesse D., Rigaud J. L. Effects of energization on membrane organization in mycoplasma. Biochim Biophys Acta. 1982 May 7;687(2):281–290. doi: 10.1016/0005-2736(82)90556-9. [DOI] [PubMed] [Google Scholar]
  15. Leblanc G., Le Grimellec C. Active K+ transport in Mycoplasms mycoides var. Capri. Relationships between K+ distribution, electrical potential and ATPase activity. Biochim Biophys Acta. 1979 Jun 13;554(1):168–179. doi: 10.1016/0005-2736(79)90016-6. [DOI] [PubMed] [Google Scholar]
  16. Manchee R. J., Taylor-Robinson D. Haemadsorption and haemagglutination by mycoplasmas. J Gen Microbiol. 1968 Mar;50(3):465–478. doi: 10.1099/00221287-50-3-465. [DOI] [PubMed] [Google Scholar]
  17. Maniloff J., Chaudhuri U. Gliding mycoplasmas are inhibited by cytochalasin B and contain a polymerizable protein fraction. J Supramol Struct. 1979;12(3):299–304. doi: 10.1002/jss.400120303. [DOI] [PubMed] [Google Scholar]
  18. Meng K. E., Pfister R. M. Intracellular structures of Mycoplasma pneumoniae revealed after membrane removal. J Bacteriol. 1980 Oct;144(1):390–399. doi: 10.1128/jb.144.1.390-399.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Razin S., Kahane I., Banai M., Bredt W. Adhesion of mycoplasmas to eukaryotic cells. Ciba Found Symp. 1981;80:98–118. doi: 10.1002/9780470720639.ch8. [DOI] [PubMed] [Google Scholar]
  20. Rottem S., Linker C., Wilson T. H. Proton motive force across the membrane of Mycoplasma gallisepticum and its possible role in cell volume regulation. J Bacteriol. 1981 Mar;145(3):1299–1304. doi: 10.1128/jb.145.3.1299-1304.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sobeslavsky O., Prescott B., Chanock R. M. Adsorption of Mycoplasma pneumoniae to neuraminic acid receptors of various cells and possible role in virulence. J Bacteriol. 1968 Sep;96(3):695–705. doi: 10.1128/jb.96.3.695-705.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tarshis M. A., Kapitanov A. B. Symport H+/carbohydrate transport into Acholeplasma laidlawii cells. FEBS Lett. 1978 May 1;89(1):73–77. doi: 10.1016/0014-5793(78)80525-0. [DOI] [PubMed] [Google Scholar]
  23. Uppal P. K., Chu H. P. Attachment of Mycoplasma gallisepticum to the tracheal epithelium of fowls. Res Vet Sci. 1977 Mar;22(2):259–260. [PubMed] [Google Scholar]
  24. Zilberstein D., Schuldiner S., Padan E. Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Biochemistry. 1979 Feb 20;18(4):669–673. doi: 10.1021/bi00571a018. [DOI] [PubMed] [Google Scholar]
  25. Ziv R., Perek M., Razin S. The action of Mycoplasma gallisepticum upon chicken, rabbit, and cow erythrocytes. Avian Dis. 1967 Aug;11(3):370–377. [PubMed] [Google Scholar]
  26. Zucker-Franklin D., Davidson M., Thomas L. The interaction of mycoplasmas with mammalian cells. I. HeLa cells, neutrophils, and eosinophils. J Exp Med. 1966 Sep 1;124(3):521–532. doi: 10.1084/jem.124.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES