Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1982 Nov;38(2):513–520. doi: 10.1128/iai.38.2.513-520.1982

Fibrinogen-mediated adherence of group A Streptococcus to influenza A virus-infected cell cultures.

B A Sanford, V E Davison, M A Ramsay
PMCID: PMC347768  PMID: 6754619

Abstract

A quantitative radioassay was used to study the adherence of group A Streptococcus to Madin-Darby canine kidney cells infected with influenza A virus (strains FM1, Jap 305, and NWS) and reacted with fibrinogen. Treatment of virus-infected cell cultures with human fibrinogen significantly enhanced streptococcal adherence (P less than 0.0005) compared with adherence to untreated, virus-infected cells and uninfected control cells. Enhanced adherence was not seen with NWS virus-infected cell cultures or with virus-infected cells treated with human fibronectin, canine fibrinogen, or porcine fibrinogen. Human fibrinogen was shown to bind directly to surface membranes of virus-infected cells. Virus-infected cell cultures were incubated in the presence of tunicamycin, an antibiotic that inhibits glycosylation of virus-specific surface membrane glycoproteins. We found that with increasing antibiotic concentration there was a progressive decrease in fibrinogen-mediated streptococcal adherence. Adherence of 3H-labeled streptococci to fibrinogen-treated, virus-infected cell cultures showed saturation kinetics and could be blocked with monospecific antibodies against fibrinogen. These results suggest that human fibrinogen binds to a glycoprotein moiety on the surface of influenza A virus-infected cells, and that once bound the fibrinogen molecule acts as an "acquired" receptor for the attachment of group A Streptococcus. We postulate that this mechanism, it if occurs in vivo, might help explain the observed association between influenza A virus infection and subsequent bacterial superinfection with group A Streptococcus.

Full text

PDF
513

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin R. M., Daniels C. A. The role of protein A in the attachment of staphylococci to influenza-infected cells. Lab Invest. 1978 Aug;39(2):128–132. [PubMed] [Google Scholar]
  2. Beachey E. H. Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. J Infect Dis. 1981 Mar;143(3):325–345. doi: 10.1093/infdis/143.3.325. [DOI] [PubMed] [Google Scholar]
  3. Colvin R. B., Gardner P. I., Roblin R. O., Verderber E. L., Lanigan J. M., Mosesson M. W. Cell surface fibrinogen-fibrin receptors on cultured human fibroblasts. Association with fibronectin (cold insoluble globulin, LETS protein) and loss in SV40 transformed cells. Lab Invest. 1979 Nov;41(5):464–473. [PubMed] [Google Scholar]
  4. Davison V. E., Sanford B. A. Adherence of staphylococcus aureus to influenza A virus-infected Madin-Darby canine kidney cell cultures. Infect Immun. 1981 Apr;32(1):118–126. doi: 10.1128/iai.32.1.118-126.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davison V. E., Sanford B. A. Factors influencing adherence of Staphylococcus aureus to influenza A virus-infected cell cultures. Infect Immun. 1982 Sep;37(3):946–955. doi: 10.1128/iai.37.3.946-955.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elbein A. D., Gafford J., Kang M. S. Inhibition of lipid-linked saccharide synthesis: comparison of tunicamycin, streptovirudin, and antibiotic 24010. Arch Biochem Biophys. 1979 Sep;196(2):311–318. doi: 10.1016/0003-9861(79)90583-6. [DOI] [PubMed] [Google Scholar]
  7. Elbein A. D., Sanford B. A., Ramsay M. A., Pan Y. T. Effect of inhibitors on glycoprotein biosynthesis and bacterial adhesion. Ciba Found Symp. 1981;80:270–287. doi: 10.1002/9780470720639.ch17. [DOI] [PubMed] [Google Scholar]
  8. Grinnell F., Feld M., Minter D. Fibroblast adhesion to fibrinogen and fibrin substrata: requirement for cold-insoluble globulin (plasma fibronectin). Cell. 1980 Feb;19(2):517–525. doi: 10.1016/0092-8674(80)90526-7. [DOI] [PubMed] [Google Scholar]
  9. Hryniewicz W., Lipinski B., Jeljaszewicz J. Nature of the interaction between M protein of Streptococcus pyogenes and fibrinogen. J Infect Dis. 1972 Jun;125(6):626–630. doi: 10.1093/infdis/125.6.626. [DOI] [PubMed] [Google Scholar]
  10. KANTOR F. S. FIBRINOGEN PRECIPITATION BY STREPTOCOCCAL M PROTEIN. I. IDENTITY OF THE REACTANTS, AND STOICHIOMETRY OF THE REACTION. J Exp Med. 1965 May 1;121:849–859. doi: 10.1084/jem.121.5.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kronvall G., Schönbeck C., Myhre E. Fibrinogen binding structures in beta-hemolytic streptococci group A, C, and G. Comparisons with receptors for IgG and aggregated beta 2-microglobulin. Acta Pathol Microbiol Scand B. 1979 Oct;87(5):303–310. [PubMed] [Google Scholar]
  12. Kronvall G., Simmons A., Myhre E. B., Jonsson S. Specific absorption of human serum albumin, immunoglobulin A, and immunoglobulin G with selected strains of group A and G streptococci. Infect Immun. 1979 Jul;25(1):1–10. doi: 10.1128/iai.25.1.1-10.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Loosli C. G. Influenza and the interaction of viruses and bacteria in respiratory infections. Medicine (Baltimore) 1973 Sep;52(5):369–384. doi: 10.1097/00005792-197309000-00001. [DOI] [PubMed] [Google Scholar]
  15. McConahey P. J., Dixon F. J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol. 1966;29(2):185–189. doi: 10.1159/000229699. [DOI] [PubMed] [Google Scholar]
  16. Pan Y. T., Schmitt J. W., Sanford B. A., Elbein A. D. Adherence of bacteria to mammalian cells: inhibition by tunicamycin and streptovirudin. J Bacteriol. 1979 Aug;139(2):507–514. doi: 10.1128/jb.139.2.507-514.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Piazzi S. E. A simple method for preliminary immunodiffusion test of antigen-antibody systems having unknown ratios of reaction. Anal Biochem. 1969 Feb;27(2):281–284. doi: 10.1016/0003-2697(69)90033-5. [DOI] [PubMed] [Google Scholar]
  18. Sanford B. A., Shelokov A., Ramsay M. A. Bacterial adherence to virus-infected cells: a cell culture model of bacterial superinfection. J Infect Dis. 1978 Feb;137(2):176–181. doi: 10.1093/infdis/137.2.176. [DOI] [PubMed] [Google Scholar]
  19. Sanford B. A., Smith N., Shelokov A., Ramsay M. A. Adherence of group B streptococci and human erythrocytes to influenza A virus-infected MDCK cells. Proc Soc Exp Biol Med. 1979 Feb;160(2):226–232. doi: 10.3181/00379727-160-40424. [DOI] [PubMed] [Google Scholar]
  20. Schwarz R. T., Rohrschneider J. M., Schmidt M. F. Suppression of glycoprotein formation of Semliki Forest, influenza, and avian sarcoma virus by tunicamycin. J Virol. 1976 Sep;19(3):782–791. doi: 10.1128/jvi.19.3.782-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Waechter C. J., Harford J. B. Evidence for the enzymatic transfer of N-acetylglucosamine from UDP--N-acetylglucosamine into dolichol derivative and glycoproteins by calf brain membranes. Arch Biochem Biophys. 1977 May;181(1):185–198. doi: 10.1016/0003-9861(77)90497-0. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES