Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1982 Nov;38(2):631–636. doi: 10.1128/iai.38.2.631-636.1982

Alterations in nucleotide content of human lung fibroblasts infected with Mycoplasma pneumoniae.

S Upchurch, M G Gabridge
PMCID: PMC347786  PMID: 6815098

Abstract

The nucleotide content of normal MRC-5 human lung fibroblasts and fibroblasts infected with Mycoplasma pneumoniae PI 1428 was determined. Nucleotides from control and infected fibroblasts were extracted with 5% trichloracetic acid. After neutralization of the extracts, the nucleotides in the extracts were separated by anion-exchange chromatography. Significant differences were found between the nucleotide content of the control and infected cells. Nucleotide triphosphate levels were twofold higher in the control fibroblasts than in the infected fibroblasts 4 h after the initiation of infection. At the same time, nucleotide diphosphate and monophosphate levels were higher in the infected fibroblasts than in the control fibroblasts. Determination of the energy charge ratio for each set of nucleotides (adenosine, guanosine, cytidine, and uridine) demonstrated a shift of nucleotide content in the infected fibroblasts. Immediately after infection, the energy charge for each set of nucleotides was higher for the control fibroblasts than it was for the infected fibroblasts. This pattern continued throughout the infection period with only minor exceptions. The work presented here indicates a loss of energy charge in fibroblasts infected with M. pneumoniae and may help to explain some of the metabolic changes and cell damage which accompany infection.

Full text

PDF
631

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akkerman J. W., Gorter G. Relation between energy production and adenine nucleotide metabolism in human blood platelets. Biochim Biophys Acta. 1980 Mar 7;590(1):107–116. doi: 10.1016/0005-2728(80)90150-4. [DOI] [PubMed] [Google Scholar]
  2. Atkinson D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 1968 Nov;7(11):4030–4034. doi: 10.1021/bi00851a033. [DOI] [PubMed] [Google Scholar]
  3. Chan T. S. Deoxyguanosine toxicity on lymphoid cells as a cause for immunosuppression in purine nucleoside phosphorylase deficiency. Cell. 1978 Jul;14(3):523–530. doi: 10.1016/0092-8674(78)90238-6. [DOI] [PubMed] [Google Scholar]
  4. Chapman A. G., Atkinson D. E. Stabilization of adenylate energy charge by the adenylate deaminase reaction. J Biol Chem. 1973 Dec 10;248(23):8309–8312. [PubMed] [Google Scholar]
  5. Cox R. P., Krauss M. R., Balis M. E., Dancis J. Metabolic cooperation in cell culture: studies of the mechanisms of cell interaction. J Cell Physiol. 1974 Oct;84(2):237–252. doi: 10.1002/jcp.1040840210. [DOI] [PubMed] [Google Scholar]
  6. Dean B. M., Perrett D., Sensi M. Changes in nucleotide concentrations in the erythrocytes of man, rabbit and rat during short-term storage. Biochem Biophys Res Commun. 1978 Jan 13;80(1):147–154. doi: 10.1016/0006-291x(78)91116-6. [DOI] [PubMed] [Google Scholar]
  7. Fox I. H., Burk L., Planet G., Goren M., Kaminska J. Pyrimidine nucleotide biosynthesis. A study of normal and purine enzyme-deficient cells. J Biol Chem. 1978 Oct 10;253(19):6794–6800. [PubMed] [Google Scholar]
  8. Fox I. H., Kelley W. N. The role of adenosine and 2'-deoxyadenosine in mammalian cells. Annu Rev Biochem. 1978;47:655–686. doi: 10.1146/annurev.bi.47.070178.003255. [DOI] [PubMed] [Google Scholar]
  9. Gabridge M. G. Oxygen consumption by trachea organ cultures infected with Mycoplasma pneumoniae. Infect Immun. 1975 Sep;12(3):544–549. doi: 10.1128/iai.12.3.544-549.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gabridge M. G., Polisky R. B. Intracellular levels of adenosine triphosphate in hamster trachea organ cultures exposed to Mycoplasma pneumoniae cells or membranes. In Vitro. 1977 Aug;13(8):510–516. doi: 10.1007/BF02615144. [DOI] [PubMed] [Google Scholar]
  11. Gabridge M. G., Polisky R. B. Quantitative reduction of 2,3,4-triphenyl tetrazolium chloride by hamster trachea organ cultures: effects of Mycoplasma pneumoniae cells and membranes. Infect Immun. 1976 Jan;13(1):84–91. doi: 10.1128/iai.13.1.84-91.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gabridge M. G., Stahl Y. D. Role of adenine in pathogenesis of Mycoplasma pneumoniae infections of tracheal epithelium. Med Microbiol Immunol. 1978 May 26;165(1):43–55. doi: 10.1007/BF02121231. [DOI] [PubMed] [Google Scholar]
  13. Gabridge M. G., Taylor-Robinson D., Davies H. A., Dourmashkin R. R. Interaction of Mycoplasma pneumoniae with human lung fibroblasts: characterization of the in vitro model. Infect Immun. 1979 Jul;25(1):446–454. doi: 10.1128/iai.25.1.446-454.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henderson J. F., Zombor G., Burridge P. W., Barankiewicz G., Smith C. M. Relationships among purine nucleoside metabolism, adenosine triphosphate catabolism, and glycolysis in human erythrocytes. Can J Biochem. 1979 Jun;57(6):873–878. doi: 10.1139/o79-107. [DOI] [PubMed] [Google Scholar]
  15. Hovi T., Allison A. C., Raivio K., Vaheri A. Purine metabolism and control of cell proliferation. Ciba Found Symp. 1977;(48):225–248. doi: 10.1002/9780470720301.ch14. [DOI] [PubMed] [Google Scholar]
  16. Hu P. C., Collier A. M., Baseman J. B. Alterations in the metabolism of hamster tracheas in organ culture after infection by virulent Mycoplasma pneumoniae. Infect Immun. 1975 Apr;11(4):704–710. doi: 10.1128/iai.11.4.704-710.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Itiaba K., Melançon S. B., Dallaire L., Crawhall J. C. Adenine phosphoribosyl transferase deficiency in association with sub-normal hypoxanthine phophoribosyl transferase in families of Lesch--Nyhan patients. Biochem Med. 1978 Apr;19(2):252–259. doi: 10.1016/0006-2944(78)90027-3. [DOI] [PubMed] [Google Scholar]
  18. Khym J. X. An analytical system for rapid separation of tissue nucleotides at low pressures on conventional anion exchangers. Clin Chem. 1975 Aug;21(9):1245–1252. [PubMed] [Google Scholar]
  19. Khym J. X., Jones M. H., Lee W. H., Regan J. D., Volkin E. On the question of compartmentalization of the nucleotide pool. J Biol Chem. 1978 Dec 25;253(24):8741–8746. [PubMed] [Google Scholar]
  20. Lothrop C. D., Jr, Uziel M. Rapid group separations of nucleotides and related compounds of silica columns. Anal Biochem. 1980 Nov 15;109(1):160–166. doi: 10.1016/0003-2697(80)90025-1. [DOI] [PubMed] [Google Scholar]
  21. Lothrop C. D., Jr, Uziel M. Rapid preparation of nucleotides from acid-soluble pools by chromatography on silica, as exemplified with acid extracts of cultured cells. Clin Chem. 1980 Sep;26(10):1430–1434. [PubMed] [Google Scholar]
  22. Lund P., Cornell N. W., Krebs H. A. Effect of adenosine on the adenine nucleotide content and metabolism of hepatocytes. Biochem J. 1975 Dec;152(3):593–599. doi: 10.1042/bj1520593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Matsumoto S. S., Raivio K. O., Seegmiller J. E. Adenine nucleotide degradation during energy depletion in human lymphoblasts. Adenosine accumulation and adenylate energy charge correlation. J Biol Chem. 1979 Sep 25;254(18):8956–8962. [PubMed] [Google Scholar]
  24. Meuwissen H. J., Pollara B. Combined immunodeficiency and inborn errors of purine metabolism. Blut. 1978 Oct 13;37(4):173–181. doi: 10.1007/BF00996718. [DOI] [PubMed] [Google Scholar]
  25. Postlethwait E. M., Young S. L. Alteration of rat lung adenine nucleotide content after pulmonary edema. Lung. 1980;158(3):157–164. doi: 10.1007/BF02713718. [DOI] [PubMed] [Google Scholar]
  26. Razin S. The mycoplasmas. Microbiol Rev. 1978 Jun;42(2):414–470. doi: 10.1128/mr.42.2.414-470.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sabina R. L., Swain J. L., Patten B. M., Ashizawa T., O'Brien W. E., Holmes E. W. Disruption of the purine nucleotide cycle. A potential explanation for muscle dysfunction in myoadenylate deaminase deficiency. J Clin Invest. 1980 Dec;66(6):1419–1423. doi: 10.1172/JCI109995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sherman I. W. Transport of amino acids and nucleic acid precursors in malarial parasites. Bull World Health Organ. 1977;55(2-3):211–225. [PMC free article] [PubMed] [Google Scholar]
  29. Snyder F. F., Cruikshank M. K., Seegmiller J. E. A comparison of purine metabolism and nucleotide pools in normal and hypoxanthine-guanine phosphoribosyltransferase-deficient neuroblastoma cells. Biochim Biophys Acta. 1978 Nov 1;543(4):556–569. doi: 10.1016/0304-4165(78)90310-0. [DOI] [PubMed] [Google Scholar]
  30. Sriram G., Taylor M. W. Purineless death: ribosomal RNA turnover in a purine-starved ade- mutant of Chinese hamster cells. J Biol Chem. 1977 Aug 10;252(15):5350–5355. [PubMed] [Google Scholar]
  31. Taylor M. W., Olivelle S., Levine R. A., Coy K., Hershey H., Gupta K. C., Zawistowich L. Regulation of de novo purine biosynthesis in Chinese hamster cells. J Biol Chem. 1982 Jan 10;257(1):377–380. [PubMed] [Google Scholar]
  32. Upchurch S., Gabridge M. G. Role of host cell metabolism in the pathogenesis of Mycoplasma pneumoniae infection. Infect Immun. 1981 Jan;31(1):174–181. doi: 10.1128/iai.31.1.174-181.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Van Dyke K., Trush M. A., Wilson M. E., Stealey P. K. Isolation and analysis of nucleotides from erythrocyte-free malarial parasites (Plasmodium berghei) and potential relevance to malaria chemotherapy. Bull World Health Organ. 1977;55(2-3):253–264. [PMC free article] [PubMed] [Google Scholar]
  34. Williams J. C. Adenine nucleotide degradation by the obligate intracellular bacterium Rickettsia typhi. Infect Immun. 1980 Apr;28(1):74–81. doi: 10.1128/iai.28.1.74-81.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Williams J. C., Weiss E. Energy metabolism of Rickettsia typhi: pools of adenine nucleotides and energy charge in the presence and absence of glutamate. J Bacteriol. 1978 Jun;134(3):884–892. doi: 10.1128/jb.134.3.884-892.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Winkler H. H. Rickettsial permeability. An ADP-ATP transport system. J Biol Chem. 1976 Jan 25;251(2):389–396. [PubMed] [Google Scholar]
  37. Zannis-Hadjopoulos M., Baumann E. A., Hand R. Effect of purine deprivation on DNA synthesis and deoxyribonucleoside triphosphate pools of a mammalian purine auxotrophic mutant cell line. J Biol Chem. 1980 Apr 10;255(7):3014–3019. [PubMed] [Google Scholar]
  38. Zoref E., Sivan O., Sperling O. Synthesis and metabolic fate of purine nucleotides in cultured fibroblasts from normal subjects and from purine overproducing mutants. Biochim Biophys Acta. 1978 Dec 21;521(2):452–458. doi: 10.1016/0005-2787(78)90286-1. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES