Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1982 Dec;38(3):993–1002. doi: 10.1128/iai.38.3.993-1002.1982

Characterization of a Galactose-Specific Lectin from Actinomyces viscosus by a Model Aggregation System

Mary J Heeb 1, Ann H Costello 1,, Othmar Gabriel 1
PMCID: PMC347848  PMID: 6185429

Abstract

A simple model system has been developed in which lectin-mediated aggregation of glycoprotein-coated beads can be monitored by following the decrease in light scattering at 650 nm. Aggregation has been characterized with the lectin of Actinomyces viscosus T14V. Its dependence on pH, temperature, and stirring rate was examined, and the number of bacterial cells in relation to the number of latex beads resulting in optimal aggregation was established. This system has the advantage of permitting the study of a single ligand of defined structure. The ligand density was determined with radiolabeled glycoproteins. Under the conditions of the assay, ligand leakage was less than 3%, and ligands were not displaced from the beads by various proteins, glycoproteins, or by other components present in the assay mixture. Latex beads coated with asialofetuin aggregate upon the addition of A. viscosus T14V cells. By contrast, when asialofetuin was first extensively treated with purified galactose oxidase, no aggregation occurred. Only after reduction with NaBH4 was aggregation restored, demonstrating that galactose termini of asialofetuin are essential for the binding of A. viscosus lectin. An absolute requirement for calcium was also demonstrated. Various sugars inhibited aggregation in the following order, starting with the most effective: lactose, methyl-β-D-galactopyranoside, galactose, N-acetylgalactosamine, methyl-α-D-galactopyranoside. Beads coated with fimbriae from A. viscosus coaggregated with neuraminidase-treated human erythrocytes and with Streptococcus sanguis cells. In each instance the aggregation was inhibited by lactose, indicating that the A. viscosus lectin is located in the fimbriae. Cells grown under different conditions differed in their effectiveness in aggregating glycoprotein-coated beads, suggesting differences in lectin density or accessibility. Two different experimental designs were used to establish the minimum ligand density for aggregation to occur. In one type of experiment, a threshold concentration was found for asialo α1-acid glycoprotein, but not for asialofetuin. With an alternate approach in which a different population of galactose residues was exposed, a threshold phenomenon was also demonstrated for asialofetuin. The importance of structural ligand features in the aggregation assay is discussed in view of these findings.

Full text

PDF
993

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agrawal B. B., Goldstein I. J. Protein-carbohydrate interaction. VI. Isolation of concanavalin A by specific adsorption on cross-linked dextran gels. Biochim Biophys Acta. 1967 Oct 23;147(2):262–271. [PubMed] [Google Scholar]
  2. Bowden G. H., Hardie J. M. Commensal and pathogenic Actinomyces species in man. Soc Appl Bacteriol Symp Ser. 1973 Jan;2:277–299. [PubMed] [Google Scholar]
  3. Bubeník J., Malkovský M., Suhajová E. The latex particle adherence (LPA) assay for detection of leukocytes with adhesive surface properties. Cell Immunol. 1978 Jan;35(1):217–225. doi: 10.1016/0008-8749(78)90141-7. [DOI] [PubMed] [Google Scholar]
  4. Cisar J. O., Barsumian E. L., Curl S. H., Vatter A. E., Sandberg A. L., Siraganian R. P. Detection and localization of a lectin on Actinomyces viscosus T14V by monoclonal antibodies. J Immunol. 1981 Oct;127(4):1318–1322. [PubMed] [Google Scholar]
  5. Cisar J. O., Kolenbrander P. E., McIntire F. C. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun. 1979 Jun;24(3):742–752. doi: 10.1128/iai.24.3.742-752.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cisar J. O., Vatter A. E. Surface fibrils (fimbriae) of Actinomyces viscosus T14V. Infect Immun. 1979 May;24(2):523–531. doi: 10.1128/iai.24.2.523-531.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Costello A. H., Cisar J. O., Kolenbrander P. E., Gabriel O. Neuraminidase-dependent hamagglutination of human erythrocytes by human strains of Actinomyces viscosus and Actinomyces naeslundii. Infect Immun. 1979 Nov;26(2):563–572. doi: 10.1128/iai.26.2.563-572.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dorland L., Haverkamp J., Vliegenthart J. F. Determination by 360 MHz 1H NMR spectroscopy of the type of branching in complex asparagine-linked glycan chains of glycoproteins. FEBS Lett. 1978 May 1;89(1):149–152. doi: 10.1016/0014-5793(78)80542-0. [DOI] [PubMed] [Google Scholar]
  9. Duguid J. P., Clegg S., Wilson M. I. The fimbrial and non-fimbrial haemagglutinins of Escherichia coli. J Med Microbiol. 1979 May;12(2):213–227. doi: 10.1099/00222615-12-2-213. [DOI] [PubMed] [Google Scholar]
  10. Ellen R. P., Fillery E. D., Chan K. H., Grove D. A. Sialidase-enhanced lectin-like mechanism for Actinomyces viscosus and Actinomyces naeslundii hemagglutination. Infect Immun. 1980 Feb;27(2):335–343. doi: 10.1128/iai.27.2.335-343.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ellen R. P., Walker D. L., Chan K. H. Association of long surface appendages with adherence-related functions of the gram-positive species Actinomyces naeslundii. J Bacteriol. 1978 Jun;134(3):1171–1175. doi: 10.1128/jb.134.3.1171-1175.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eshdat Y., Silverblatt F. J., Sharon N. Dissociation and reassembly of Escherichia coli type 1 pili. J Bacteriol. 1981 Oct;148(1):308–314. doi: 10.1128/jb.148.1.308-314.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans D. G., Evans D. J., Jr, Clegg S., Pauley J. A. Purification and characterization of the CFA/I antigen of enterotoxigenic Escherichia coli. Infect Immun. 1979 Aug;25(2):738–748. doi: 10.1128/iai.25.2.738-748.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fromageot H. P. Adsorption of human erythrocyte surface glycoprotein onto polystyrene latex spheres. J Lab Clin Med. 1977 Aug;90(2):324–329. [PubMed] [Google Scholar]
  15. Fukuda M., Osawa T. Isolation and characterization of a glycoprotein from human group O erythrocyte membrane. J Biol Chem. 1973 Jul 25;248(14):5100–5105. [PubMed] [Google Scholar]
  16. GLYNN M. F., MOVAT H. Z., MURPHY E. A., MUSTARD J. F. STUDY OF PLATELET ADHESIVENESS AND AGGREGATION, WITH LATEX PARTICLES. J Lab Clin Med. 1965 Feb;65:179–201. [PubMed] [Google Scholar]
  17. Gilboa-Garber N. Pseudomonas aeruginosa lectins. Methods Enzymol. 1982;83:378–385. doi: 10.1016/0076-6879(82)83034-6. [DOI] [PubMed] [Google Scholar]
  18. Goldstein I. J., Hayes C. E. The lectins: carbohydrate-binding proteins of plants and animals. Adv Carbohydr Chem Biochem. 1978;35:127–340. doi: 10.1016/s0065-2318(08)60220-6. [DOI] [PubMed] [Google Scholar]
  19. Grinnell F., Feld M. K. Initial adhesion of human fibroblasts in serum-free medium: possible role of secreted fibronectin. Cell. 1979 May;17(1):117–129. doi: 10.1016/0092-8674(79)90300-3. [DOI] [PubMed] [Google Scholar]
  20. Hudgin R. L., Pricer W. E., Jr, Ashwell G., Stockert R. J., Morell A. G. The isolation and properties of a rabbit liver binding protein specific for asialoglycoproteins. J Biol Chem. 1974 Sep 10;249(17):5536–5543. [PubMed] [Google Scholar]
  21. Jones G. W., Freter R. Adhesive properties of Vibrio cholerae: nature of the interaction with isolated rabbit brush border membranes and human erythrocytes. Infect Immun. 1976 Jul;14(1):240–245. doi: 10.1128/iai.14.1.240-245.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jordan H. V., Hammond B. F. Filamentous bacteria isolated from human root surface caries. Arch Oral Biol. 1972 Sep;17(9):1333–1342. doi: 10.1016/0003-9969(72)90166-5. [DOI] [PubMed] [Google Scholar]
  23. Kawasaki T., Ashwell G. Carbohydrate structure of glycopeptides isolated from an hepatic membrane-binding protein specific for asialoglycoproteins. J Biol Chem. 1976 Sep 10;251(17):5292–5299. [PubMed] [Google Scholar]
  24. Kolenbrander P. E., Williams B. L. Lactose-reversible coaggregation between oral actinomycetes and Streptococcus sanguis. Infect Immun. 1981 Jul;33(1):95–102. doi: 10.1128/iai.33.1.95-102.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Korhonen T. K., Väisänen V., Saxén H., Hultberg H., Svenson S. B. P-antigen-recognizing fimbriae from human uropathogenic Escherichia coli strains. Infect Immun. 1982 Jul;37(1):286–291. doi: 10.1128/iai.37.1.286-291.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McIntire F. C., Vatter A. E., Baros J., Arnold J. Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34. Infect Immun. 1978 Sep;21(3):978–988. doi: 10.1128/iai.21.3.978-988.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morell A. G., Van den Hamer C. J., Scheinberg I. H., Ashwell G. Physical and chemical studies on ceruloplasmin. IV. Preparation of radioactive, sialic acid-free ceruloplasmin labeled with tritium on terminal D-galactose residues. J Biol Chem. 1966 Aug 25;241(16):3745–3749. [PubMed] [Google Scholar]
  28. Rauvala H., Carter W. G., Hakomori S. I. Studies on cell adhesion and recognition. I. Extent and specificity of cell adhesion triggered by carbohydrate-reactive proteins (glycosidases and lectins) and by fibronectin. J Cell Biol. 1981 Jan;88(1):127–137. doi: 10.1083/jcb.88.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Revis G. J., Vatter A. E., Crowle A. J., Cisar J. O. Antibodies against the Ag2 fimbriae of Actinomyces viscosus T14V inhibit lactose-sensitive bacterial adherence. Infect Immun. 1982 Jun;36(3):1217–1222. doi: 10.1128/iai.36.3.1217-1222.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Riviere G. R., Cotton W. R., Derkowski J. L. Latex spheres as immunologic markers to demonstrate the binding of human salivary immunoglobulins to Streptococcus mutans. J Dent Res. 1976 Sep-Oct;55(5):879–885. doi: 10.1177/00220345760550052801. [DOI] [PubMed] [Google Scholar]
  31. Rölla G., Kilian M. Haemagglutination activity of plaque-forming bacteria. Caries Res. 1977;11(2):85–89. doi: 10.1159/000260253. [DOI] [PubMed] [Google Scholar]
  32. Sharon N., Eshdat Y., Silverblatt F. J., Ofek I. Bacterial adherence to cell surface sugars. Ciba Found Symp. 1981;80:119–141. doi: 10.1002/9780470720639.ch9. [DOI] [PubMed] [Google Scholar]
  33. Skoza L., Mohos S. Stable thiobarbituric acid chromophore with dimethyl sulphoxide. Application to sialic acid assay in analytical de-O-acetylation. Biochem J. 1976 Dec 1;159(3):457–462. doi: 10.1042/bj1590457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Spiro R. G. Glycoproteins. Adv Protein Chem. 1973;27:349–467. doi: 10.1016/s0065-3233(08)60451-9. [DOI] [PubMed] [Google Scholar]
  35. Suttajit M., Winzler R. J. Effect of modification of N-acetylneuraminic acid on the binding of glycoproteins to influenza virus and on susceptibility to cleavage by neuraminidase. J Biol Chem. 1971 May 25;246(10):3398–3404. [PubMed] [Google Scholar]
  36. Tsai C. M., Zopf D. A., Ginsburg V. The molecular basis for cold agglutination: effect of receptor density upon thermal amplitude of a cold agglutinin. Biochem Biophys Res Commun. 1978 Feb 28;80(4):905–910. doi: 10.1016/0006-291x(78)91330-x. [DOI] [PubMed] [Google Scholar]
  37. Van Lenten L., Ashwell G. Studies on the chemical and enzymatic modification of glycoproteins. A general method for the tritiation of sialic acid-containing glycoproteins. J Biol Chem. 1971 Mar 25;246(6):1889–1894. [PubMed] [Google Scholar]
  38. Weigel P. H., Schnaar R. L., Kuhlenschmidt M. S., Schmell E., Lee R. T., Lee Y. C., Roseman S. Adhesion of hepatocytes to immobilized sugars. A threshold phenomenon. J Biol Chem. 1979 Nov 10;254(21):10830–10838. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES