Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1983 Feb;39(2):948–954. doi: 10.1128/iai.39.2.948-954.1983

Effect of Micropolyspora faeni cells and cell wall fractions on rabbit alveolar macrophages.

D B Learn, I S Snyder
PMCID: PMC348037  PMID: 6832824

Abstract

The reactivity of alveolar macrophages (AM) to cells and cell wall fractions (CWF) of Micropolyspora faeni was investigated. Exposure of cultured AM to M. faeni and its CWF caused the AM to form clumps or aggregates which remained attached to the culture dish surface. Other gram-positive and gram-negative bacteria as well as yeast, zymosan, latex microspheres, and isolated peptidoglycan from Listeria monocytogenes did not cause this response. The response was independent of species source and antibody content of the serum used in culture. The use of heat-inactivated sera negated the role of complement activation in the aggregation of AM. AM cultures required a period of culture before exposure to cells or CWF for this response to occur. This response was both time and dose dependent. Rabbit peritoneal macrophages also exhibited the clumping response. Degradation of a purified CWF, fraction 3, with lysozyme greatly diminished the clumping response. Chemical purification of fraction 3 with periodate, formamide, or trichloracetic acid also decreased this activity. These data suggest that the major active component causing this response is peptidoglycan but that other materials associated with the cell wall may also be important. A soluble-factor chemotactic for normal rabbit AM was found in the culture fluid of AM exposed to fraction 3. M. faeni cells and CWF also caused normal rabbit AM to chemiluminesce.

Full text

PDF
948

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bentley C., Bitter-Suermann D., Hadding U., Brade V. In vitro synthesis of factor B of the alternative pathway of complement activation by mouse peritoneal macrophages. Eur J Immunol. 1976 Jun;6(6):393–398. doi: 10.1002/eji.1830060604. [DOI] [PubMed] [Google Scholar]
  2. Bianco C., Götze O., Cohn Z. A. Regulation of macrophage migration by products of the complement system. Proc Natl Acad Sci U S A. 1979 Feb;76(2):888–891. doi: 10.1073/pnas.76.2.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bice D. E., McCarron K., Hoffman E. O., Salvaggio J. Adjuvant properties of Micropolyspora faeni. Int Arch Allergy Appl Immunol. 1977;55(1-6):267–274. doi: 10.1159/000231935. [DOI] [PubMed] [Google Scholar]
  4. Colten H. R., Ooi Y. M., Edelson P. J. Synthesis and secretion of complement proteins by macrophages. Ann N Y Acad Sci. 1979;332:482–490. doi: 10.1111/j.1749-6632.1979.tb47142.x. [DOI] [PubMed] [Google Scholar]
  5. Edwards J. H. A quantitative study on the activation of the alternative pathway of complement by mouldy hay dust and thermophilic actinomycetes. Clin Allergy. 1976 Jan;6(1):19–25. doi: 10.1111/j.1365-2222.1976.tb01408.x. [DOI] [PubMed] [Google Scholar]
  6. Engel D., Clagett J., Page R., Williams B. Mitogenic activity of Actinomyces viscosus. I. Effects on murine B and T lymphocytes, and partial characterization. J Immunol. 1977 Apr;118(4):1466–1471. [PubMed] [Google Scholar]
  7. KEELER R. F., GRAY M. L. Antigenic and related biochemical properties of Listeria monocytogenes. I. Preparation and composition of cell wall material. J Bacteriol. 1960 Nov;80:683–692. doi: 10.1128/jb.80.5.683-692.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kawai T., Salvaggio J., Harris J. O., Arquembourg P. Alveolar macrophage migration inhibition in animals immunized with thermophilic actinomycete antigen. Clin Exp Immunol. 1973 Sep;15(1):123–130. [PMC free article] [PubMed] [Google Scholar]
  9. Kawai T., Salvaggio J., Lake W., Harris J. O. Experimental production of hypersensitivity pneumonitis with bagasse and thermophilic actinomycete antigen. J Allergy Clin Immunol. 1972 Nov;50(5):276–288. doi: 10.1016/0091-6749(72)90026-7. [DOI] [PubMed] [Google Scholar]
  10. Kazmierowski J. A., Gallin J. I., Reynolds H. Y. Mechanism for the inflammatory response in primate lungs. Demonstration and partial characterization of an alveolar macrophage-derived chemotactic factor with preferential activity for polymorphonuclear leukocytes. J Clin Invest. 1977 Feb;59(2):273–281. doi: 10.1172/JCI108638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kolenbrander P. E., Ensign J. C. Isolation and chemical structure of the peptidoglycan of Spirillum serpens cell walls. J Bacteriol. 1968 Jan;95(1):201–210. doi: 10.1128/jb.95.1.201-210.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MYRVIK Q., LEAKE E. S., FARISS B. Studies on pulmonary alveolar macrophages from the normal rabbit: a technique to procure them in a high state of purity. J Immunol. 1961 Feb;86:128–132. [PubMed] [Google Scholar]
  13. Marx J. J., Jr, Motszko C., Roberts R. C. Antibody-independent complement consumption by Micropolyspora faeni. Int Arch Allergy Appl Immunol. 1980;62(2):133–141. doi: 10.1159/000232505. [DOI] [PubMed] [Google Scholar]
  14. Mosser J. L., Tomasz A. Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J Biol Chem. 1970 Jan 25;245(2):287–298. [PubMed] [Google Scholar]
  15. Ooi Y. M., Colten H. R. Biosynthesis and post-synthetic modification of a precursor (pro-C5) of the fifth component of mouse complement (C5). J Immunol. 1979 Dec;123(6):2494–2498. [PubMed] [Google Scholar]
  16. PERKINS H. R. THE ACTION OF HOT FORMAMIDE ON BACTERIAL CELL WALLS. Biochem J. 1965 Jun;95:876–882. doi: 10.1042/bj0950876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roberts R. C., Moore V. L. Immunopathogenesis of hypersensitivity pneumonitis. Am Rev Respir Dis. 1977 Dec;116(6):1075–1090. doi: 10.1164/arrd.1977.116.6.1075. [DOI] [PubMed] [Google Scholar]
  18. Schorlemmer H. U., Edwards J. H., Davies P., Allison A. C. Macrophage responses to mouldy hay dust, Micropolyspora faeni and zymosan, activators of complement by the alternative pathway. Clin Exp Immunol. 1977 Feb;27(2):198–207. [PMC free article] [PubMed] [Google Scholar]
  19. Seal R. M., Hapke E. J., Thomas G. O., Meek J. C., Hayes M. The pathology of the acute and chronic stages of farmer's lung. Thorax. 1968 Sep;23(5):469–489. doi: 10.1136/thx.23.5.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Seijelid R., Bögwald J., Lundwall A. Glycan stimulation of macrophages in vitro. Exp Cell Res. 1981 Jan;131(1):121–129. doi: 10.1016/0014-4827(81)90413-4. [DOI] [PubMed] [Google Scholar]
  21. Smith S. M., Burrell R., Snyder I. S. Complement activation by cell wall fractions of Micropolyspora faeni. Infect Immun. 1978 Nov;22(2):568–574. doi: 10.1128/iai.22.2.568-574.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith S. M., Hill J. O., Snyder I. S., Burrell R. Mitogenicity of cell wall fractions of Micropolyspora faeni. Ann Allergy. 1978 Jan;40(1):12–14. [PubMed] [Google Scholar]
  23. Smith S. M., Snyder I. S., Burrell R. Mitogenic response to Micropolyspora faeni cell walls. J Allergy Clin Immunol. 1980 Apr;65(4):298–304. doi: 10.1016/0091-6749(80)90159-1. [DOI] [PubMed] [Google Scholar]
  24. Standford R. E., Salvaggio J. E. Experimental granulomatous pneumonitis: immunologic, histologic, and ultrastructural correlations. Chest. 1976 Feb;69(2 Suppl):288–290. [PubMed] [Google Scholar]
  25. Stankus R. P., Cashner F. M., Salvaggio J. E. Bronchopulmonary macrophage activation in the pathogenesis of hypersensitivity pneumonitis. J Immunol. 1978 Mar;120(3):685–688. [PubMed] [Google Scholar]
  26. Wilkie B., Pauli B., Gygax M. Hypersensitivity pneumonitis: experimental production in guinea pigs with antigens of Micropolyspora faeni. Pathol Microbiol (Basel) 1973;39(6):393–411. doi: 10.1159/000162686. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES