Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1983 Mar;39(3):1161–1166. doi: 10.1128/iai.39.3.1161-1166.1983

Studies on the catalase of Histoplasma capsulatum.

D H Howard
PMCID: PMC348078  PMID: 6301990

Abstract

Factors which control the levels of catalase within yeast cells of Histoplasma capsulatum were studied. Only a small fraction of the total catalase activity could be detected in whole cells. The bulk of the activity was revealed in cell-free extracts or in cells permeabilized with acetone. The formation of the enzyme was regulated by glucose and by oxygen. There were large, consistent differences in the levels of catalase among strains of H. capsulatum. The sensitivity of the strains to H2O2 toxicity also varied remarkably. Peroxidase activity could not be detected in cell-free extracts of the strains. Resistance to H2O2 did not correspond to levels of catalase. There was no obvious correlation of H2O2 sensitivity and virulence among the strains.

Full text

PDF
1161

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ananthaswamy H. N., Eisenstark A. Repair of hydrogen peroxide-induced single-strand breaks in Escherichia coli deoxyribonucleic acid. J Bacteriol. 1977 Apr;130(1):187–191. doi: 10.1128/jb.130.1.187-191.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHANTRENNE H., COURTOIS C. Formation de catalase induite par l'oxygène chez la levure. Biochim Biophys Acta. 1954 Jul;14(3):397–400. doi: 10.1016/0006-3002(54)90198-5. [DOI] [PubMed] [Google Scholar]
  3. Carlsson J., Carpenter V. S. The recA+ gene product is more important than catalase and superoxide dismutase in protecting Escherichia coli against hydrogen peroxide toxicity. J Bacteriol. 1980 Apr;142(1):319–321. doi: 10.1128/jb.142.1.319-321.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Damiani G., Kiyotaki C., Soeller W., Sasada M., Peisach J., Bloom B. R. Macrophage variants in oxygen metabolism. J Exp Med. 1980 Oct 1;152(4):808–822. doi: 10.1084/jem.152.4.808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gifford G. D., Pritchard G. G. Toxicity of hyperbaric oxygen to yeasts displaying periodic enzyme synthesis. J Gen Microbiol. 1969 May;56(2):143–149. doi: 10.1099/00221287-56-2-143. [DOI] [PubMed] [Google Scholar]
  6. Howard D. H. Comparative sensitivity of Histoplasma capsulatum conidiospores and blastospores to oxidative antifungal systems. Infect Immun. 1981 Apr;32(1):381–387. doi: 10.1128/iai.32.1.381-387.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Howard D. H. Fate of Histoplasma capsulatum in guinea pig polymorphonuclear leukocytes. Infect Immun. 1973 Sep;8(3):412–419. doi: 10.1128/iai.8.3.412-419.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Howard D. H., Otto V. Experiments on lymphocyte-mediated cellular immunity in murine histoplasmosis. Infect Immun. 1977 Apr;16(1):226–231. doi: 10.1128/iai.16.1.226-231.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jackett P. S., Aber V. R., Lowrie D. B. Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis. J Gen Microbiol. 1978 Jan;104(1):37–45. doi: 10.1099/00221287-104-1-37. [DOI] [PubMed] [Google Scholar]
  10. Jackett P. S., Andrew P. W., Aber V. R., Lowrie D. B. Hydrogen peroxide and superoxide release by alveolar macrophages from normal and BCG-vaccinated guinea-pigs after intravenous challenge with Mycobacterium tuberculosis. Br J Exp Pathol. 1981 Aug;62(4):419–428. [PMC free article] [PubMed] [Google Scholar]
  11. KAPLAN J. G. ACTION OF NON-PENETRATING HEAVY METALS ON THE CATALASE ACTIVITY OF YEAST CELLS. Nature. 1965 Jan 2;205:76–77. doi: 10.1038/205076a0. [DOI] [PubMed] [Google Scholar]
  12. KAPLAN J. G. Heat inactivation of cryptic catalase of yeast. Nature. 1962 Dec 8;196:950–952. doi: 10.1038/196950a0. [DOI] [PubMed] [Google Scholar]
  13. KAPLAN J. G. The effect of inhibitors on the induction of cryptic and patent yeast catalase. Enzymologia. 1963 May 15;25:359–366. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Moore C. W. Ligase-deficient yeast cells exhibit defective DNA rejoining and enhanced gamma ray sensitivity. J Bacteriol. 1982 Jun;150(3):1227–1233. doi: 10.1128/jb.150.3.1227-1233.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murray H. W., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as an expression of macrophage activation. J Exp Med. 1980 Dec 1;152(6):1596–1609. doi: 10.1084/jem.152.6.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murray H. W., Nathan C. F., Cohn Z. A. Macrophage oxygen-dependent antimicrobial activity. IV. Role of endogenous scavengers of oxygen intermediates. J Exp Med. 1980 Dec 1;152(6):1610–1624. doi: 10.1084/jem.152.6.1610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. PINE L. Studies on the growth of Histoplasma capsulatum. I. Growth of the yeast phase in liquid media. J Bacteriol. 1954 Dec;68(6):671–679. doi: 10.1128/jb.68.6.671-679.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sels A. A., Brygier J. Inhibition studies in situ of yeast catalases. Eur J Biochem. 1980 Nov;112(2):283–291. doi: 10.1111/j.1432-1033.1980.tb07204.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES