Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1983 Jun;40(3):917–923. doi: 10.1128/iai.40.3.917-923.1983

Effect of erythrocyte ingestion on macrophage antibacterial function.

W L Hand, N L King-Thompson
PMCID: PMC348139  PMID: 6303960

Abstract

Individuals with sickle cell anemia are subject to serious infections caused by a number of bacteria, including Salmonella species and Staphylococcus aureus. It has been suggested that in sickle cell anemia, extensive erythrophagocytosis by macrophages may interfere with their antibacterial function and thereby predispose to infection. As a means of investigating this possibility, we evaluated the effects of erythrocyte ingestion on the Killing of Salmonella typhimurium by peritoneal macrophages and of S. aureus by alveolar macrophages. Monolayers of rabbit macrophages were exposed to erythrocytes or latex particles immediately before and during bacterial challenge. Erythrophagocytosis markedly inhibited intracellular killing of S. typhimurium by peritoneal macrophages (bacterial survival was 181% of control) and of staphylococci by alveolar macrophages (bacterial survival was greater than 200% of control). Exposure to latex particles depressed the bactericidal activity of alveolar macrophages to a lesser degree. Next we investigated the possibility that erythrophagocytosis inhibits oxidative bactericidal mechanisms in macrophages. Hexose monophosphate shunt activity was stimulated by erythrocyte ingestion. However, zymosan-induced superoxide generation and chemiluminescence were suppressed by erythrocytes. Furthermore, a cell-free (hypoxanthine-xanthine oxidase) system for chemiluminescence generation was also depressed in the presence of erythrocytes (intact or lysate) or by purified hemoglobin. These studies reveal that erythrophagocytosis inhibits macrophage antibacterial function, probably because of interactions between erythrocyte components and reactive products of phagocyte oxygen metabolism. This host defense abnormality may predispose to bacterial infection in certain hemolytic anemias.

Full text

PDF
917

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. C., Loose L. D. Phagocytic activation of a luminol-dependent chemiluminescence in rabbit alveolar and peritoneal macrophages. Biochem Biophys Res Commun. 1976 Mar 8;69(1):245–252. doi: 10.1016/s0006-291x(76)80299-9. [DOI] [PubMed] [Google Scholar]
  2. Babior B. M. Oxygen-dependent microbial killing by phagocytes (second of two parts). N Engl J Med. 1978 Mar 30;298(13):721–725. doi: 10.1056/NEJM197803302981305. [DOI] [PubMed] [Google Scholar]
  3. Barrett-Connor E. Bacterial infection and sickle cell anemia. An analysis of 250 infections in 166 patients and a review of the literature. Medicine (Baltimore) 1971 Mar;50(2):97–112. [PubMed] [Google Scholar]
  4. Bentley C., Bitter-Suermann D., Hadding U., Brade V. In vitro synthesis of factor B of the alternative pathway of complement activation by mouse peritoneal macrophages. Eur J Immunol. 1976 Jun;6(6):393–398. doi: 10.1002/eji.1830060604. [DOI] [PubMed] [Google Scholar]
  5. Cantey J. R., Hand W. L. Cell-mediated immunity after bacterial infection of the lower respiratory tract. J Clin Invest. 1974 Nov;54(5):1125–1134. doi: 10.1172/JCI107856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Charache S., Scott J. C., Charache P. "Acute chest syndrome" in adults with sickle cell anemia. Microbiology, treatment, and prevention. Arch Intern Med. 1979 Jan;139(1):67–69. [PubMed] [Google Scholar]
  7. Eeckels R., Gatti F., Renoirte A. M. Abnormal distribution of haemoglobin genotypes in Negro children with severe bacterial infections. Nature. 1967 Oct 28;216(5113):382–382. doi: 10.1038/216382a0. [DOI] [PubMed] [Google Scholar]
  8. Einstein L. P., Schneeberger E. E., Colten H. R. Synthesis of the second component of complement by long-term primary cultures of human monocytes. J Exp Med. 1976 Jan 1;143(1):114–126. doi: 10.1084/jem.143.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ellis E. F., Smith R. T. The role of the spleen in immunity. With special reference to the post-splenectomy problem in infants. Pediatrics. 1966 Jan;37(1):111–119. [PubMed] [Google Scholar]
  10. Gill F. A., Kaye D., Hook E. W. The influence of erythrophagocytosis on the interaction of macrophages and salmonella in vitro. J Exp Med. 1966 Aug 1;124(2):173–183. doi: 10.1084/jem.124.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gladstone G. P., Walton E. Effect of iron on the bactericidal proteins from rabbit polymorphonuclear leukocytes. Nature. 1970 Aug 22;227(5260):849–851. doi: 10.1038/227849a0. [DOI] [PubMed] [Google Scholar]
  12. Gladstone G. P., Walton E. The effect of iron and haematin on the killing of staphylococci by rabbit polymorphs. Br J Exp Pathol. 1971 Oct;52(5):452–464. [PMC free article] [PubMed] [Google Scholar]
  13. HOOK E. W. Salmonellosis: certain factors influencing the interaction of Salmonella and the human host. Bull N Y Acad Med. 1961 Jul;37:499–512. [PMC free article] [PubMed] [Google Scholar]
  14. Hand W. L., King N. L. Deficiency of serum bactericidal activity against Salmonella typhimurium in sickle cell anaemia. Clin Exp Immunol. 1977 Nov;30(2):262–270. [PMC free article] [PubMed] [Google Scholar]
  15. Hand W. L., King N. L. Serum opsonization of salmonella in sickle cell anemia. Am J Med. 1978 Mar;64(3):388–395. doi: 10.1016/0002-9343(78)90217-6. [DOI] [PubMed] [Google Scholar]
  16. Hand W. L., Smith J. W., Sanford J. P. The antibacterial effect of normal and infected urinary bladder. J Lab Clin Med. 1971 Apr;77(4):605–615. [PubMed] [Google Scholar]
  17. Hau T., Simmons R. L. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. III. The influence of hemoglobin on phagocytosis and intracellular killing by human granulocytes. Surgery. 1980 May;87(5):588–592. [PubMed] [Google Scholar]
  18. Hodgson E. K., Fridovich I. The mechanism of the activity-dependent luminescence of xanthine oxidase. Arch Biochem Biophys. 1976 Jan;172(1):202–205. doi: 10.1016/0003-9861(76)90067-9. [DOI] [PubMed] [Google Scholar]
  19. Johnson J. D., Hand W. L., King N. L., Hughes C. G. Activation of alveolar macrophages after lower respiratory tract infection. J Immunol. 1975 Jul;115(1):80–84. [PubMed] [Google Scholar]
  20. Johnston R. B., Jr, Godzik C. A., Cohn Z. A. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978 Jul 1;148(1):115–127. doi: 10.1084/jem.148.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kaplan S. S., Quie P. G., Basford R. E. Effect of iron on leukocyte function: inactivation of H2O2 BY IRON. Infect Immun. 1975 Aug;12(2):303–308. doi: 10.1128/iai.12.2.303-308.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kaye D., Gill F. A., Hook E. W. Factors influencing host resistance to Salmonella infections: the effects of hemolysis and erythrophagocytosis. Am J Med Sci. 1967 Aug;254(2):205–215. doi: 10.1097/00000441-196708000-00011. [DOI] [PubMed] [Google Scholar]
  23. Klebanoff S. J. Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med. 1980 Sep;93(3):480–489. doi: 10.7326/0003-4819-93-3-480. [DOI] [PubMed] [Google Scholar]
  24. Leung L. S., Szal G. J., Drachman R. H. Increased susceptibility of splenectomized rats to infection with Diplococcus pneumoniae. J Infect Dis. 1972 Nov;126(5):507–513. doi: 10.1093/infdis/126.5.507. [DOI] [PubMed] [Google Scholar]
  25. MYRVIK Q., LEAKE E. S., FARISS B. Studies on pulmonary alveolar macrophages from the normal rabbit: a technique to procure them in a high state of purity. J Immunol. 1961 Feb;86:128–132. [PubMed] [Google Scholar]
  26. Nathan C. F., Brukner L. H., Silverstein S. C., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. I. Pharmacologic triggering of effector cells and the release of hydrogen peroxide. J Exp Med. 1979 Jan 1;149(1):84–99. doi: 10.1084/jem.149.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nathan C. F., Silverstein S. C., Brukner L. H., Cohn Z. A. Extracellular cytolysis by activated macrophages and granulocytes. II. Hydrogen peroxide as a mediator of cytotoxicity. J Exp Med. 1979 Jan 1;149(1):100–113. doi: 10.1084/jem.149.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pearson H. A., Spencer R. P., Cornelius E. A. Functional asplenia in sickle-cell anemia. N Engl J Med. 1969 Oct 23;281(17):923–926. doi: 10.1056/NEJM196910232811703. [DOI] [PubMed] [Google Scholar]
  29. Ruddy S., Gigli I., Austen K. F. The complement system of man (second of four parts). N Engl J Med. 1972 Sep 14;287(11):545–549. doi: 10.1056/NEJM197209142871106. [DOI] [PubMed] [Google Scholar]
  30. Stecher V. J., Thorbecke G. J. Sites of synthesis of serum proteins. OI. Serum proteins produced by macrophages in vitro. J Immunol. 1967 Oct;99(4):643–652. [PubMed] [Google Scholar]
  31. Walton E., Gladstone G. P. Factors affecting the susceptibility of staphylococci to killing by the cationic proteins from rabbit polymorphonuclear leucocytes: the effects of alteration of cellular energetics and of various iron compounds. Br J Exp Pathol. 1976 Oct;57(5):560–570. [PMC free article] [PubMed] [Google Scholar]
  32. Weinberg J. B., Hibbs J. B., Jr Endocytosis of red blood cells or haemoglobin by activated macrophages inhibits their tumoricidal effect. Nature. 1977 Sep 15;269(5625):245–247. doi: 10.1038/269245a0. [DOI] [PubMed] [Google Scholar]
  33. Welch W. D., Rose D. M., Carlson R. Reduced hemoglobin as an inhibitor of human polymorphonuclear leukocyte bacterial killing. Role of hemoglobin--oxygen tension in polymorphonuclear function. Surgery. 1982 Jan;91(1):75–80. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES