Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1983 Jun;40(3):1004–1010. doi: 10.1128/iai.40.3.1004-1010.1983

Synovial fluid inhibits killing of Staphylococcus aureus by neutrophils.

G L Simon, H G Miller, D G Borenstein
PMCID: PMC348150  PMID: 6303954

Abstract

Serum in the extracellular environment promotes neutrophil bactericidal activity apart from its opsonizing properties. We examined the effect of non-inflammatory osteoarthritic synovial fluid on serum-mediated neutrophil killing of Staphylococcus aureus. This was done to evaluate the effect of synovial fluid on neutrophil bactericidal activity independent of opsonin concentration. With an initial inoculum of 5 X 10(6) CFU/ml, 1.47 +/- 0.14% bacteria survived after 120 min of incubation with 10% serum and neutrophils. In contrast, 4.07 +/- 0.33% bacteria survived after incubation in serum plus synovial fluid (P less than 0.001). This inhibitory effect was directly related to the concentration of synovial fluid in the incubation mixture. Increasing the concentration of synovial fluid resulted in an increased percent survival. Studies utilizing preopsonized bacteria and radiolabeled organisms demonstrated that synovial fluid did not interfere with opsonization or phagocytosis. Intracellular bactericidal activity was assayed separately from phagocytosis by utilizing a brief ingestion period followed by the removal of extracellular bacteria by either differential centrifugation or lysostaphin treatment. The reincubation of cells and associated bacteria with serum or serum plus synovial fluid revealed that synovial fluid significantly inhibited the promoting effect of serum on neutrophil bactericidal activity. After 60 min of incubation with 10% serum, 13.0 +/- 1.2% bacteria survived, whereas 21.5 +/- 2.3% survived after incubation in serum plus synovial fluid (P less than 0.005). Superoxide production was not affected by the presence of synovial fluid. These findings suggest that the inhibitory effect of synovial fluid is due to an interaction between synovial fluid and the serum factors that promote intracellular killing.

Full text

PDF
1004

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blake D. R., Hall N. D., Treby D. A., Halliwell B., Gutteridge J. M. Protection against superoxide and hydrogen peroxide in synovial fluid from rheumatoid patients. Clin Sci (Lond) 1981 Oct;61(4):483–486. doi: 10.1042/cs0610483. [DOI] [PubMed] [Google Scholar]
  2. Bodel P. T., Hollingsworth J. W. Comparative morphology, respiration, and phagocytic function of leukocytes from blood and joint fluid in rheumatoid arthritis. J Clin Invest. 1966 Apr;45(4):580–589. doi: 10.1172/JCI105372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Christie K. E., Solberg C. O., Larsen B., Grov A., Tonder O. Influence of IgG, F(ab')2 and IgM on the phagocytic and bactericidal activities of human neutrophil granulocytes. Acta Pathol Microbiol Scand C. 1976 Apr;84(2):119–123. doi: 10.1111/j.1699-0463.1976.tb00008.x. [DOI] [PubMed] [Google Scholar]
  4. Curnutte J. T., Babior B. M. Biological defense mechanisms. The effect of bacteria and serum on superoxide production by granulocytes. J Clin Invest. 1974 Jun;53(6):1662–1672. doi: 10.1172/JCI107717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldenberg D. L., Cohen A. S. Acute infectious arthritis. A review of patients with nongonococcal joint infections (with emphasis on therapy and prognosis). Am J Med. 1976 Mar;60(3):369–377. doi: 10.1016/0002-9343(76)90753-1. [DOI] [PubMed] [Google Scholar]
  6. Greenwald R. A., Moy W. W. Effect of oxygen-derived free radicals on hyaluronic acid. Arthritis Rheum. 1980 Apr;23(4):455–463. doi: 10.1002/art.1780230408. [DOI] [PubMed] [Google Scholar]
  7. Kelly P. J., Martin W. J., Coventry M. B. Bacterial (suppurative) arthritis in the adult. J Bone Joint Surg Am. 1970 Dec;52(8):1595–1602. [PubMed] [Google Scholar]
  8. Kushner I., Somerville J. A. Permeability of human synovial membrane to plasma proteins. Relationship to molecular size and inflammation. Arthritis Rheum. 1971 Sep-Oct;14(5):560–570. doi: 10.1002/art.1780140503. [DOI] [PubMed] [Google Scholar]
  9. LI I. W., MUDD S. THE HEAT-LABILE SERUM FACTOR ASSOCIATED WITH INTRACELLULAR KILLING OF STAPHYLOCOCCUS AUREUS. J Immunol. 1965 Jun;94:852–857. [PubMed] [Google Scholar]
  10. Leijh P. C., van den Barselaar M. T., Daha M. R., van Furth R. Participation of immunoglobulins and complement components in the intracellular killing of Staphylococcus aureus and Escherichia coli by human granulocytes. Infect Immun. 1981 Sep;33(3):714–724. doi: 10.1128/iai.33.3.714-724.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leijh P. C., van den Barselaar M. T., Dubbeldeman-Rempt I., van Furth R. Kinetics of intracellular killing of Staphylococcus aureus and Escherichia coli by human granulocytes. Eur J Immunol. 1980 Oct;10(10):750–757. doi: 10.1002/eji.1830101005. [DOI] [PubMed] [Google Scholar]
  12. Leijh P. C., van den Barselaar M. T., van Zwet T. L., Daha M. R., van Furth R. Requirement of extracellular complement and immunoglobulin for intracellular killing of micro-organisms by human monocytes. J Clin Invest. 1979 Apr;63(4):772–784. doi: 10.1172/JCI109362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MARGOLIASH E., FROHWIRT N. Spectrum of horse-heart cytochrome c. Biochem J. 1959 Mar;71(3):570–572. doi: 10.1042/bj0710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Repine J. E., White J. G., Clawson C. C., Holmes B. M. The influence of phorbol myristate acetate on oxygen consumption by polymorphonuclear leukocytes. J Lab Clin Med. 1974 Jun;83(6):911–920. [PubMed] [Google Scholar]
  15. Rosenthal J., Bole G. G., Robinson W. D. Acute nongonococcal infectious arthritis. Evaluation of risk factors, therapy, and outcome. Arthritis Rheum. 1980 Aug;23(8):889–897. doi: 10.1002/art.1780230803. [DOI] [PubMed] [Google Scholar]
  16. Solberg C. O., Christie K. E., Larsen B., Tonder O. Influence of antibodies and thermolabile serum factors on the bactericidal activity of human neutrophil granulocytes. Acta Pathol Microbiol Scand C. 1976 Apr;84(2):112–118. doi: 10.1111/j.1699-0463.1976.tb00007.x. [DOI] [PubMed] [Google Scholar]
  17. Solberg C. O., Hellum K. B. Influence of serum on the bactericidal activity of neutrophil granulocytes. Acta Pathol Microbiol Scand B Microbiol Immunol. 1973 Oct;81(5):621–626. doi: 10.1111/j.1699-0463.1973.tb02252.x. [DOI] [PubMed] [Google Scholar]
  18. Tan J. S., Watanakunakorn C., Phair J. P. A modified assay of neutrophil function: use of lysostaphin to differentiate defective phagocytosis from impaired intracellular killing. J Lab Clin Med. 1971 Aug;78(2):316–322. [PubMed] [Google Scholar]
  19. Turner R. A., Schumacher R., Myers A. R. Phagocytic function of polymorphonuclear leukocytes in rheumatic diseases. J Clin Invest. 1973 Jul;52(7):1632–1635. doi: 10.1172/JCI107342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Verhoef J., Peterson P. K., Quie P. G. Kinetics of staphylococcal opsonization, attachment, ingestion and killing by human polymorphonuclear leukocytes: a quantitative assay using [3H]thymidine labeled bacteria. J Immunol Methods. 1977;14(3-4):303–311. doi: 10.1016/0022-1759(77)90141-7. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES