Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1983 Jun;40(3):1119–1126. doi: 10.1128/iai.40.3.1119-1126.1983

Mechanism of immunosuppression in leprosy: presence of suppressor factor(s) from macrophages of lepromatous patients.

P R Salgame, P R Mahadevan, N H Antia
PMCID: PMC348166  PMID: 6221997

Abstract

Human peripheral blood mononuclear cell proliferation induced by Mycobacterium leprae could be inhibited by the suppressor factor in the lysate of the macrophages of lepromatous leprosy patients. Macrophages from normal subjects and tuberculoid patients did not show production of a suppressor factor. Inhibition occurred only when the factor was present in the initial stages of lymphocyte culture. The factor is heat stable and nondialyzable. Proliferation induced by some mycobacteria and concanavalin A could also be blocked by the factor. Interestingly, blastogenic response by a few other antigens and phytohemagglutinin could not be inhibited by the suppressor factor. Mononuclear cells pretreated with such lysate from lepromatous macrophages for 24 h could induce suppressive activity in the cells in vitro in an autologous system. Treatment of these cells with carbonyl iron after the induction phase, to remove phagocytic cells, did not abolish their suppressive activity. The lepromatous macrophage lysate also generated suppressive activity in a T-lymphocyte-enriched population of normal subjects. These studies are interpreted to indicate that immunosuppression in lepromatous patients is produced by both macrophages and T lymphocytes. The exact phase in which either of these cells acts as a suppressor may be different. Specific suppression by macrophages to M. leprae can be an early event, and nonspecific suppression by T lymphocytes may be a later event in the course of lepromatous leprosy.

Full text

PDF
1119

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambrose E. J., Khanolkar S. R., Chulawalla R. G. A rapid test for bacillary resistance to dapsone. Lepr India. 1978 Apr;50(2):131–143. [PubMed] [Google Scholar]
  2. Bullock W. E., Carlson E. M., Gershon R. K. The evolution of immunosuppressive cell populations in experimental mycobacterial infection. J Immunol. 1978 May;120(5):1709–1716. [PubMed] [Google Scholar]
  3. Calderon J., Williams R. T., Unanue E. R. An inhibitor of cell proliferation released by cultures of macrophages. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4273–4277. doi: 10.1073/pnas.71.11.4273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ellner J. J. Suppressor adherent cells in human tuberculosis. J Immunol. 1978 Dec;121(6):2573–2579. [PubMed] [Google Scholar]
  5. Gasbarre L. C., Hug K., Louis J. Murine T lymphocyte specificity for African trypanosomes. II. Suppression of the T lymphocyte proliferative response to Trypanosoma brucei by systemic trypanosome infection. Clin Exp Immunol. 1981 Jul;45(1):165–172. [PMC free article] [PubMed] [Google Scholar]
  6. Godal T., Myklestad B., Samuel D. R., Myrvang B. Characterization of the cellular immune defect in lepromatous leprosy: a specific lack of circulating Mycobacterium leprae-reactive lymphocytes. Clin Exp Immunol. 1971 Dec;9(6):821–831. [PMC free article] [PubMed] [Google Scholar]
  7. Greene W. C., Fleisher T. A., Waldmann T. A. Soluble suppressor supernatants elaborated by concanavalin A-activated human mononuclear cells. I. Characterization of a soluble suppressor T cell proliferation. J Immunol. 1981 Mar;126(3):1185–1191. [PubMed] [Google Scholar]
  8. Hirschberg H. The role of macrophages in the lymphoproliferative response to Mycobacterium leprae in vitro. Clin Exp Immunol. 1978 Oct;34(1):46–51. [PMC free article] [PubMed] [Google Scholar]
  9. Klimpel G. R., Henney C. S. BCG-induced suppressor cells. I. Demonstration of a macrophage-like suppressor cell that inhibits cytotoxic T cell generation in vitro. J Immunol. 1978 Feb;120(2):563–569. [PubMed] [Google Scholar]
  10. Lim S. D., Kiszkiss D. F., Jacobson R. R., Choi Y. S., Good R. A. Thymus-dependent lymphocytes of peripheral blood in leprosy patients. Infect Immun. 1974 Feb;9(2):394–399. doi: 10.1128/iai.9.2.394-399.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mehra V. L., Talwar G. P., Balakrishnan K., Bhutani L. K. Influence of chemotherapy and serum factors on the mitogenic response of peripheral leucocytes of leprosy patients to phytohaemagglutinin. Clin Exp Immunol. 1972 Oct;12(2):205–213. [PMC free article] [PubMed] [Google Scholar]
  12. Mehra V., Mason L. H., Fields J. P., Bloom B. R. Lepromin-induced suppressor cells in patients with leprosy. J Immunol. 1979 Oct;123(4):1813–1817. [PubMed] [Google Scholar]
  13. Nath I., Van Rood J. J., Mehra N. K., Vaidya M. C. Natural suppressor cells in human leprosy: the role of HLA-D-identical peripheral lymphocytes and macrophages in the in vitro modulation of lymphoproliferative responses. Clin Exp Immunol. 1980 Nov;42(2):203–210. [PMC free article] [PubMed] [Google Scholar]
  14. Opitz H. G., Niethammer D., Lemke H., Flad H. D., Huget R. Inhibition of 3H-thymidine incorporation of lymphocytes by a soluble factor from macrophages. Cell Immunol. 1975 Apr;16(2):379–388. doi: 10.1016/0008-8749(75)90126-4. [DOI] [PubMed] [Google Scholar]
  15. Ridley D. S., Jopling W. H. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966 Jul-Sep;34(3):255–273. [PubMed] [Google Scholar]
  16. Rosenthal A. S., Shevach E. M. Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J Exp Med. 1973 Nov 1;138(5):1194–1212. doi: 10.1084/jem.138.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Salgame P. R., Birdi T. J., Mahadevan P. R., Antia N. H. Role of macrophages in defective cell mediated immunity in lepromatous leprosy. I. Factor(s) from macrophages affecting protein synthesis and lymphocyte transformation. Int J Lepr Other Mycobact Dis. 1980 Jun;48(2):172–177. [PubMed] [Google Scholar]
  18. Stobo J. D. Immunosuppression in man: suppression by macrophages can be mediated by interactions with regulatory T cells. J Immunol. 1977 Sep;119(3):918–924. [PubMed] [Google Scholar]
  19. Wadee A. A., Sher R., Rabson A. R. Production of a suppressor factor by human adherent cells treated with mycobacteria. J Immunol. 1980 Sep;125(3):1380–1386. [PubMed] [Google Scholar]
  20. Waldman S. R., Gottlieb A. A. Macrophage regulation of DNA synthesis in lymphoid cells: effects of a soluble factor from macrophages. Cell Immunol. 1973 Oct;9(1):142–156. doi: 10.1016/0008-8749(73)90175-5. [DOI] [PubMed] [Google Scholar]
  21. Watson S. R., Collins F. M. The specificity of suppressor T cells induced by chronic Mycobacterium avium infection in mice. Clin Exp Immunol. 1981 Jan;43(1):10–19. [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES