Skip to main content
Nicotine & Tobacco Research logoLink to Nicotine & Tobacco Research
. 2012 Apr 3;14(11):1249–1257. doi: 10.1093/ntr/nts091

Nicotinic ACh Receptors in the Hippocampus: Role in Excitability and Plasticity

Jerrel L Yakel 1,
PMCID: PMC3482011  PMID: 22472168

Abstract

Introduction:

The nicotinic ACh receptors (nAChRs) are in the cys-loop family of ligand-gated ion channels. They are widely expressed throughout the brain, including in the hippocampus where they are thought to be involved in regulating excitability, plasticity, and cognitive function. In addition, dysfunction in hippocampal nAChRs has been linked to a variety of neurological disorders and diseases, including Alzheimer’s disease, schizophrenia, and epilepsy. In order to understand how to treat nAChR-related disorders and diseases, it is critical to understand how these receptors participate in normal brain function; this entails not only understanding the biophysical properties of ion channel function and their pattern of expression but also how these receptors are regulating excitability and circuit behavior.

Discussion:

The primary cholinergic input to the hippocampus comes from the medial septum and diagonal band of Broca; however, the mechanistic details are unknown of how activation of cholinergic receptors, either through exogenous nAChR ligands or the activation of endogenous acetylcholine release, regulates hippocampal network activity. This entails direct study of the excitatory and inhibitory neuronal networks, as well as the role of nonneuronal cells, in regulating hippocampal function.

Conclusions:

Here, I will review the latest work from my laboratory in which we have attempted to do just that, with the overall goal of learning more about the role of the hippocampal nAChR in synaptic plasticity.

Introduction

The nicotinic ACh receptors (nAChRs) are in the cys-loop family of ligand-gated ion channels. They are widely expressed throughout the brain, including in the hippocampus where various subtypes of nAChRs are thought to be involved in regulating excitability, plasticity, and cognitive function (Hasselmo, 1999; Jones, Sudweeks, & Yakel, 1999; Levin, 2002; Reis et al., 2009). Furthermore dysfunction in hippocampal nAChRs has been linked to a variety of neurological disorders and diseases, including (but not limited to) Alzheimer’s disease (AD), schizophrenia, and epilepsy (Dani, 2000; Eşkazan et al., 1999; Terry & Buccafusco, 2003; Tizabi, 2007). Thus far, six α (2–7) and three β (2–4) nAChR subunits have been found to be expressed in the mammalian brain, with the most prevalent subtypes of functional nAChRs in the hippocampus being comprised of the α7 and α4β2 subtypes (Alkondon & Albuquerque, 1993, 2004; Jones & Yakel, 1997; Sargent, 1993; Sudweeks & Yakel, 2000; Wada et al., 1989).

Nicotine is the major compound in tobacco that affects memory and cognition (Dajas-Bailador & Wonnacott, 2004; Davis, Kenney, & Gould, 2007; McGehee & Role, 1996; Peeke & Peeke, 1984; Potter & Newhouse, 2008; Timmermann et al., 2007). Compounds acting on nAChRs are being developed for treating neurological diseases and disorders, including AD (Levin, McClernon, & Rezvani, 2006; Levin & Rezvani, 2002), Parkinson’s disease (Park et al., 2007; Quik, Bordia, et al., 2007; Quik, Cox, et al., 2007; Villafane et al., 2007), attention-deficit hyperactivity disorder (Potter & Newhouse, 2008), schizophrenia (Tizabi, 2007), and epilepsy (Shin et al., 2007). In order to understand how to treat nAChR-related disorders and diseases, it is critical to understand how these receptors participate in normal brain function. This entails not only understanding the biophysical properties of ion channel function and their pattern of expression but also how these receptors are regulating excitability and circuit behavior.

The primary cholinergic input to the hippocampus comes from the medial septum and diagonal band of Broca (MSDB), and the activation of both nAChRs and muscarinic ACh receptors (mAChRs) can initiate and sustain network oscillations important for cognitive function (Cobb & Davies, 2005; Dutar et al., 1995; Frotscher & Léránth, 1985; Lawrence, Grinspan, Statland, & McBain, 2006; Lawrence, Statland, Grinspan, & McBain, 2006; Léránth & Frotscher, 1987). In addition to the primary cholinergic input from the MSDB, there is also a significant gamma-aminobutyric acid (GABA)-ergic input. Hippocampal GABAergic interneurons, which express both nAChRs and mAChRs, can coordinate the activity of large numbers of principal cells. The phasic GABAergic input, in concert with the tonic cholinergic excitation of interneurons, is thought to induce rhythmic inhibition of pyramidal cells (Buzsaki, 2002; Freund & Antal, 1988; Griguoli & Cherubini, 2011; Jones et al., 1999; Stewart & Fox, 1990; Tóth, Freund, & Miles, 1997). Additionally, inputs to the hippocampus from the entorhinal cortex (EC) are thought to regulate hippocampal theta rhythm (Buzsaki, 2002). Nevertheless, it is unclear precisely how both mAChRs and nAChRs, working in concert, can modulate the oscillatory properties of neurons within the hippocampus. Understanding how cholinergic receptor signaling regulates hippocampal network activity is critical since dysregulation of normal oscillations may induce hyperexcitability, leading to both seizures (Bertrand, Weiland, Berkovic, Steinlein, & Bertrand, 1998; Damaj, Glassco, Dukat, & Martin, 1999; Turski, Ikonomidou, Turski, Bortolotto, & Cavalheiro, 1989) and cognitive deficits linked with AD (Fodale, Quattrone, Trecroci, Caminiti, & Santamaria, 2006).

The nAChRs (in particular the α7 subtype) are thought to be participating in various mechanisms of neuroprotection (Dineley, 2007; Parri, Hernandez, & Dineley, 2011; Shen & Yakel, 2009). For example, the nicotine-mediated neuroprotection against either glutamate excitotoxicity or the β-amyloid (Aβ) peptide (associated with AD) is thought to be acting through the α7 nAChR (Dajas-Bailador, Lima, & Wonnacott, 2000; Jonnala & Buccafusco, 2001; Kihara et al., 1997; Stevens, Krueger, Fitzsimonds, & Picciotto, 2003; Svensson & Nordberg, 1999). Interestingly, there may also be a role for the α7 nAChR in inflammation in the brain as in the periphery (Shen & Yakel, 2009). In the brain (and in particular the hippocampus), nicotine or ACh activation of the α7 nAChR blocked the release of proinflammatory cytokines (Shytle et al., 2004; Tyagi, Agrawal, Nath, & Shukla, 2010), while in the periphery, ACh activation of the α7 nAChR inhibits cytokine synthesis (Wang et al., 2003). Nonneuronal cells in the nervous system have also been reported to express nAChRs. Astrocytes are the predominant glial cell in the mammalian brain (Agulhon et al., 2008). Glial cells express a wide variety of neurotransmitter receptors and ion channels, including the α7 nAChR subtype (Sharma & Vijayaraghavan, 2001; Shytle et al., 2004; Vélez-Fort, Audinat, & Angulo 2009). In addition, in the brain, astrocytes are also known to participate in synaptic signaling and plasticity (Agulhon et al., 2008; Araque et al., 2002; Fiacco, Agulhon, & McCarthy, 2009). Therefore, astrocytes may be playing a role in AD and/or neuroprotection that depend in part on the function of the α7 nAChRs. However, it should be noted that nicotine, particularly in developing fetuses and children, may be neurodevelopmentally harmful and produce AD-like symptoms (Swan & Lessov-Schlaggar, 2007).

It is critical that we understand in much more detail the relationships between the excitatory and inhibitory neuronal networks, as well as the role of nonneuronal cells, in regulating hippocampal function if we are to understand the role that the nAChRs are having in regulating hippocampal excitability, plasticity, and their role in disease.

Role of Nicotine in Regulating Hippocampal Excitability and Plasticity

Although nicotine has been known to enhance cognitive function for decades, the mechanisms whereby cholinergic receptor activation can influence hippocampal neuronal networks are far from understood. To gain more insights into the role that nicotine (via activation of nAChRs) is playing in the intact hippocampal circuit, and to understand which regions in the hippocampal complex are responsible for the initiation and spreading of information involving cholinergic receptors during smoking, we have utilized voltage-sensitive dye imaging techniques in combination with patch-clamp and field recordings to investigate spatial-temporal aspects of cholinergic responses in the hippocampal complex (Tu, Gu, Shen, Lamb, & Yakel, 2009).

The hippocampal formation (HF), which is critical to memory and cognition and mediates the influences of nicotine on memory (Blozovski, 1983, 1985; Davis et al., 2007; Izquierdo et al., 2008), can be divided up into four main subregions (Amaral & Witter, 1995); the dentate gyrus, the hippocampal proper (including Cornu Ammonis [CA1], CA2, and CA3 regions), the subicular complex (including the subiculum [Sb]), and the EC (including Layers I–VI). Previously the main focus of investigation has centered on the hippocampal proper and dentate regions (Dani & Bertrand, 2007; Jones & Yakel, 1997) because of the known importance of these regions in learning and memory (Chen et al., 2006; Hasselmo, 2005; Hunsaker, Lee, & Kesner, 2008; Izquierdo et al., 2008; Lee, Hunsaker, & Kesner, 2005; Li & Chao, 2008) and the ability of nicotine to induce synaptic potentiation (Fujii, Ji, Morita, & Sumikawa, 1999; Gray, Rajan, Radcliffe, Yakehiro, & Dani, 1996; He, Deng, Zhu, Yu, & Chen, 2003; Hunter, de Fiebre, Papke, Kem, & Meyer, 1994; Matsuyama, Matsumoto, Enomoto, & Nishizaki, 2000; Sawada, Yamamoto, & Ohno-Shosaku, 1994). However, whether nAChRs were expressed in either the subicular complex or EC had been previously unknown, although both regions have critical roles in memory functions themselves (Blozovski, 1983, 1985; Burhans & Gabriel, 2007; Deadwyler & Hampson, 2004; Harich, Kinfe, Koch, & Schwabe, 2008; Izquierdo et al., 2008; Martin-Fardon, Ciccocioppo, Aujla, & Weiss, 2007; O’Mara, Commins, Anderson, & Gigg, 2001; Van Cauter, Poucet, & Save, 2008).

Therefore, we investigated how the slow bath application of nicotine (to emulate systematic administration occurring during smoking or while using nicotine patches) affected network activity in entorhino-hippocampal slices (Tu et al., 2009). We found that a concentration of nicotine comparable to that achieved through smoking (i.e., as low as 100 nM) depolarized neurons in the deep EC cortical layers (Layer VI) via activation of the α4β2 subtype of non-α7 nAChRs. Subicular neurons, which project to the Layer VI of the EC, also contain functional non-α7 nAChRs that were activated by the bath-applied nicotine. Interestingly both of these nAChR-expressing excitatory postsynaptic current (ECVI) and Sb groups of neurons were primarily glutamatergic. Furthermore, when we recorded from ECVI neurons directly (utilizing patch-clamp techniques) and evoked glutamatergic EPSCs (eEPSCs) to the ECVI neurons by stimulating the Sb near the CA1 region, a low dose of nicotine (100 nM) enhanced synaptic transmission by enhancing the amplitude of these eEPSCs. This low dose of bath-applied nicotine also enhanced synaptic plasticity in the ECVI neurons since it was able to convert short-term potentiation (STP) that was induced by tetanus stimulation of the Sb to long-term potentiation (LTP). Since LTP is thought to be a cellular form of learning and memory, this nicotine-induced plasticity could help in understanding the procognitive effects of nicotine. In addition the ability of nicotine to enhance synaptic transmission and plasticity was through action on both α7 and non-α7 nAChRs. Therefore, neurons in deep layers of the EC not only contain diverse subtypes of functional nAChRs, but that these neurons may also be important regulators of hippocampal excitability and plasticity during smoking.

In the HF, diverse nAChR subtypes are mainly expressed on GABAergic interneurons (Alkondon & Albuquerque, 2001; Fayuk & Yakel, 2004, 2005; Frazier, Buhler, et al., 1998, Frazier, Rollins, et al., 1998; Jones & Yakel, 1997; Khiroug, Giniatullin, Klein, Fayuk, & Yakel, 2003; Klein & Yakel, 2005; McQuiston & Madison, 1999; Sudweeks & Yakel, 2000; Welsby, Rowan, & Anwyl, 2007), although there is some evidence of expression by glutamatergic neurons (Fabian-Fine et al., 2001; Gray et al., 1996; Tu et al., 2009). It is notable, therefore, that we found that the neurons expressing the highest density of α4β2 nAChRs in the HF that were depolarized by bath-applied nicotine were on the ECVI and Sb neurons and therefore, outside of the hippocampal proper and dentate regions. It should also be noted that while these neurons also express functional α7 receptors, these receptors were desensitized by the slow bath application of nicotine and thus did not contribute to the depolarizations observed in this study.

Role of Endogenous Cholinergic Inputs in Regulating Hippocampal Plasticity

Both the nAChRs and mAChRs have previously been associated with multiple forms of plasticity (Cobb & Davies, 2005; Fujii & Sumikawa, 2001; Ji, Lape, & Dani, 2001; Maylie & Adelman, 2010; McGehee, 2002). For example, for the α7 nAChR subtype, the activation of these receptors with exogenous ligands in the CA1 and dentate gyrus regions enhanced synaptic plasticity (Fujii et al., 1999; Mann & Greenfield, 2003; Welsby, Rowan, & Anwyl, 2006; Welsby et al., 2007). Furthermore, in the hippocampus, α7 nAChRs on presynaptic terminals can increase the probability of producing LTP and can block STP and LTP in the pyramidal cells (Ji et al., 2001). The non-α7 nAChRs (i.e., α4-containing receptors) are also involved in regulating hippocampal plasticity as described above in the EC (Tu et al., 2009). These data were consistent with the report that α4-containing nAChRs contribute to LTP facilitation in the hippocampal perforant path (Nashmi et al., 2007). The mAChRs are also involved in regulating many forms of plasticity (Maylie & Adelman, 2010). For example, the activation of either pre or postsynaptic mAChRs can either enhance or reduce LTP in the hippocampus (Buchanan, Petrovic, Chamberlain, Marrion, & Mellor, 2010; Cobb & Davies, 2005; Leung, Shen, Rajakumar, & Ma, 2003; Ovsepian, Anwyl, & Rowan, 2004; Seeger et al., 2004).

We wanted to understand how the endogenous activation of cholinergic inputs to the hippocampus regulated or induced synaptic plasticity in the hippocampus since the vast majority of prior knowledge is derived from the use of exogenously applied receptor agonists or blockers. Using exogenous ligands, information about the timing and context of neurotransmitter action is usually lacking, information which is critical however for information processing and computation (Dan & Poo, 2004; Gradinaru et al., 2010; Silberberg, Wu, & Markram, 2004). For example, small shifts in the timing of the same glutamatergic input could result in either LTP or long-term depression in the case of spike-timing dependent plasticity (Zhang, Tao, Holt, Harris, & Poo, 1998). In addition previous studies have also shown that the timing of exogenously applied acetylcholine (ACh) is important in modulating high frequency stimulation (HFS)-induced hippocampal synaptic plasticity (Ge & Dani, 2005; Ji et al., 2001), suggesting the potential capability of ACh in executing physiological functions with high temporal precision.

Therefore, we investigated (Gu & Yakel, 2011) how the activation of the endogenous cholinergic input pathway from the septum to the hippocampus, either electrically or by using the recently developed optogenetic approach that allows precise control of specific cholinergic input with high temporal precision (Tsai et al., 2009; Witten et al., 2010), could regulate hippocampal synaptic plasticity. As opposed to the previous findings that ACh only has modulatory effects on existing HFS-induced synaptic plasticity (Dani & Bertrand, 2007; Jerusalinsky et al., 1997; Kenney & Gould, 2008; Power, Vazdarjanova, & McGaugh, 2003), we found that activation of the cholinergic input to the hippocampus with single electrical or light pulses can directly induce different forms of hippocampal synaptic plasticity after several trials, depending on the input context in the hippocampus, with a timing precision in the millisecond range. For example, when the cholinergic input to the CA1 hippocampal region was activated 100 ms prior to activation of the Schaffer collateral (SC) glutamatergic pathway, this resulted in an α7 nAChR-dependent LTP that was likely due to a postsynaptic effect that required the activation of the NMDA receptor (NMDAR), the prolongation of the NMDAR-mediated calcium transients in the CA1 pyramidal cell spines, and finally synaptic insertion of the GluR2-containing AMPA receptors into these spines. In contrast when the cholinergic input was activated only 10 ms prior to the SC pathway, this resulted in an α7 nAChR-dependent short-term depression (STD) that was likely mediated primarily through the presynaptic inhibition of glutamate release. Lastly, if the cholinergic input was activated 10 ms after the SC pathway, this induced LTP that was dependent on the activation of the mAChR and was mostly likely due to a postsynaptic mechanism. Therefore, altering the timing of activation of the septal cholinergic input to the hippocampus induces three different forms of plasticity that depended solely on the timing of the input relative to the SC stimulation.

Cholinergic dysfunction has long been hypothesized to be a major cause of the cognitive deficit in AD (Bartus, Dean, Beer, & Lippa, 1982; Terry & Buccafusco, 2003). Since hippocampal α7 nAChRs have previously been shown to have a critical role in working and reference memory (Levin, 2002; Levin et al., 2009), and the cognitive deficits associated with AD may be related to dysfunction of the α7 nAChRs (Dineley, 2007; Jonnala & Buccafusco, 2001; Kihara et al., 2001; Parri et al., 2011), we tested whether the various forms of plasticity mentioned above were sensitive to exposure to the soluble oligomeric (rather than the fibrillar) form of Aβ peptide; the soluble form of Aβ peptide has been proposed to cause the synaptic and cognitive dysfunction in AD (Haass & Selkoe, 2007; Hsieh et al., 2006; Lue et al., 1999; McLean et al., 1999; Selkoe, 2002). We found that the α7 nAChR-dependent LTP and STD were both completely blocked in slices preexposed to a low dose (100 nM) of oligomeric Aβ, whereas the mAChR-mediated LTP required higher doses (1 μM) for complete blockage (Gu & Yakel, 2011). These results thus provide a mechanism for Aβ to impair cholinergic-related synaptic plasticity and potentially cognitive functions.

These data show that a novel physiologically relevant neural activity pattern can induce different forms of synaptic plasticity in the hippocampus. Furthermore, we have shown that synaptic plasticity in the hippocampus can be induced by an extrinsic input, which provides a mechanism to integrate information from extrinsic pathways and store it in local hippocampal synapses. Therefore, this mechanism is likely relevant to understanding learning and memory, which usually involves the precise coordination among multiple brain regions. These results have revealed the striking temporal accuracy of cholinergic transmission and the physiological neural activity patterns that can induce dynamic synaptic plasticity as a result of interactions among neural networks, which is fundamental to understanding the information computation and storage in learning and memory.

Summary

Ongoing and future studies, taking advantage of new and more relevant animal models of disease, with new advances in cutting-edge biological methodologies (such as optogenetics), will allow further in-depth analysis of brain circuits and how they function in normal brains and in the diseased state. This guarantees that new and exciting advances should be just around the corner.

Funding

This work was supported by the Intramural Research Program of the National Institutes of Health, National Institute of Environmental Health Sciences.

Declaration of Interests

The author declares no competing conflicts.

References

  1. Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, et al. What is the role of astrocyte calcium in neurophysiology? Neuron. 2008;59:932–946. doi: 10.1016/j.neuron.2008.09.004. doi:10.1016/j.neuron.2008.09.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alkondon M, Albuquerque EX. Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. Journal of Pharmacology and Experimental Therapeutics. 1993;265:1455–1473. Retrieved from http://jpet.aspetjournals.org/content/265/3/1455.long. [PubMed] [Google Scholar]
  3. Alkondon M, Albuquerque EX. Nicotinic acetylcholine receptor alpha7 and alpha4beta2 subtypes differentially control GABAergic input to CA1 neurons in rat hippocampus. Journal of Neurophysiology. 2001;86:3043–3055. doi: 10.1152/jn.2001.86.6.3043. Retrieved from http://jn.physiology.org/content/86/6/3043.full.pdf+html. [DOI] [PubMed] [Google Scholar]
  4. Alkondon M, Albuquerque EX. The nicotinic acetylcholine receptor subtypes and their function in the hippocampus and cerebral cortex. Progress in Brain Research. 2004;145:109–120. doi: 10.1016/S0079-6123(03)45007-3. doi:10.1016/S0079-6123(03)45007-3. [DOI] [PubMed] [Google Scholar]
  5. Amaral DG, Witter MP. Hippocampal formation. In: George P, editor. The rat nervous system. Sydney, Australia: Academic Press; 1995. p. 444. [Google Scholar]
  6. Araque A, Martín ED, Perea G, Arellano JI, Buño W. Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. Journal of Neuroscience. 2002;22:2443–2450. doi: 10.1523/JNEUROSCI.22-07-02443.2002. Retrieved from http://www.jneurosci.org/content/22/7/2443.full.pdf+html. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bartus RT, Dean RL, III, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408–414. doi: 10.1126/science.7046051. Retrieved from http://www.sciencemag.org/content/217/4558/408.long. [DOI] [PubMed] [Google Scholar]
  8. Bertrand S, Weiland S, Berkovic SF, Steinlein OK, Bertrand D. Properties of neuronal nicotinic acetylcholine receptor mutants from humans suffering from autosomal dominant nocturnal frontal lobe epilepsy. British Journal of Pharmacology. 1998;125:751–760. doi: 10.1038/sj.bjp.0702154. doi:10.1038/sj.bjp.0702154/pdf. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Blozovski D. Deficits in passive avoidance learning in young rats following mecamylamine injections in the hippocampo-entorhinal area. Experimental Brain Research. 1983;50:442–448. doi: 10.1007/BF00239211. [DOI] [PubMed] [Google Scholar]
  10. Blozovski D. Mediation of passive avoidance learning by nicotinic hippocampo-entorhinal components in young rats. Developmental Psychobiology. 1985;18:355–366. doi: 10.1002/dev.420180408. [DOI] [PubMed] [Google Scholar]
  11. Buchanan KA, Petrovic MM, Chamberlain SE, Marrion NV, Mellor JR. Facilitation of long-term potentiation by muscarinic M(1) receptors is mediated by inhibition of SK channels. Neuron. 2010;68:948–963. doi: 10.1016/j.neuron.2010.11.018. doi:10.1016/j.neuron.2010.11.018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Burhans LB, Gabriel M. Contextual modulation of conditioned responses: Role of the ventral subiculum and nucleus accumbens. Behavioral Neuroscience. 2007;121:1243–1257. doi: 10.1037/0735-7044.121.6.1243. Retrieved from http://www.apa.org/pubs/journals/bne/index.aspx. [DOI] [PubMed] [Google Scholar]
  13. Buzsaki G. Theta oscillations in the hippocampus. Neuron. 2002;33:325–340. doi: 10.1016/s0896-6273(02)00586-x. doi:10.1016/S0896-6273(02)00586-X. [DOI] [PubMed] [Google Scholar]
  14. Chen L, Gong S, Shan LD, Xu WP, Zhang YJ, Guo SY, et al. Effects of exercise on neurogenesis in the dentate gyrus and ability of learning and memory after hippocampus lesion in adult rats. Neuroscience Bulletin. 2006;22:1–6. Retrieved from http://www.springer.com/biomed/neuroscience/journal/12264. [PubMed] [Google Scholar]
  15. Cobb SR, Davies CH. Cholinergic modulation of hippocampal cells and circuits. Journal of Physiology. 2005;562:81–88. doi: 10.1113/jphysiol.2004.076539. doi:10.1113/jphysiol.2004.076539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dajas-Bailador F, Wonnacott S. Nicotinic acetylcholine receptors and the regulation of neuronal signaling. Trends in Pharmacological Sciences. 2004;25:317–324. doi: 10.1016/j.tips.2004.04.006. doi:10.1016/j.tips.2004.04.006. [DOI] [PubMed] [Google Scholar]
  17. Dajas-Bailador FA, Lima PA, Wonnacott S. The α7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca2+ dependent mechanism. Neuropharmacology. 2000;39:2799–2807. doi: 10.1016/s0028-3908(00)00127-1. doi:10.1016/S0028-3908(00)00127-1. [DOI] [PubMed] [Google Scholar]
  18. Damaj MI, Glassco W, Dukat M, Martin BR. Pharmacological characterization of nicotine-induced seizures in mice. Journal of Pharmacology and Experimental Therapeutics. 1999;291:1284–1291. Retrieved from http://jpet.aspetjournals.org/content/291/3/1284.long. [PubMed] [Google Scholar]
  19. Dan Y, Poo MM. Spike timing-dependent plasticity of neural circuits. Neuron. 2004;44:23–30. doi: 10.1016/j.neuron.2004.09.007. doi:10.1016/j.neuron.2004.09.007. [DOI] [PubMed] [Google Scholar]
  20. Dani JA. Properties underlying the influence of nicotinic receptors on neuronal excitability and epilepsy. Epilepsia. 2000;41:1063–1065. doi: 10.1111/j.1528-1157.2000.tb00300.x. Retrieved from http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1528-1167. [DOI] [PubMed] [Google Scholar]
  21. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Reviews of Pharmacology and Toxicology. 2007;47:699–729. doi: 10.1146/annurev.pharmtox.47.120505.105214. doi:10.1146/annurev.pharmtox.47.120505.105214. [DOI] [PubMed] [Google Scholar]
  22. Davis JA, Kenney JW, Gould TJ. Hippocampal alpha4beta2 nicotinic acetylcholine receptor involvement in the enhancing effect of acute nicotine on contextual fear conditioning. Journal of Neuroscience. 2007;27:10870–10877. doi: 10.1523/JNEUROSCI.3242-07.2007. doi:10.1523/JNEUROSCI.3242-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Deadwyler SA, Hampson RE. Differential but complementary mnemonic functions of the hippocampus and subiculum. Neuron. 2004;42:465–476. doi: 10.1016/s0896-6273(04)00195-3. doi:10.1016/S0896-6273(04)00195-3. [DOI] [PubMed] [Google Scholar]
  24. Dineley KT. Beta-amyloid peptide—Nicotinic acetylcholine receptor interaction: The two faces of health and disease. Frontiers in Bioscience. 2007;12:5030–5038. doi: 10.2741/2445. doi:10.2741/2445. [DOI] [PubMed] [Google Scholar]
  25. Dutar P, Bassant MH, Senut MC, Lamour Y. The septohippocampal pathway: Structure and function of a central cholinergic system. Physiological Reviews. 1995;75:393–427. doi: 10.1152/physrev.1995.75.2.393. Retrieved from http://physrev.physiology.org/content/75/2/393.long. [DOI] [PubMed] [Google Scholar]
  26. Eşkazan E, Aker R, Onat F, Köseoğlu S, Gören MZ, Hasanoğlu A. Effect of pirenzepine, a muscarinic M1 receptor antagonist, on amygdala kindling in rat. Epilepsy Research. 1999;37:133–140. doi: 10.1016/s0920-1211(99)00040-6. doi:10.1016/S0920-1211(99)00040-6. [DOI] [PubMed] [Google Scholar]
  27. Fabian-Fine R, Skehel P, Errington ML, Davies HA, Sher E, Stewart MG, et al. Ultrastructural distribution of the α7 nicotinic acetylcholine receptor subunit in rat hippocampus. Journal of Neuroscience. 2001;21:7993–8003. doi: 10.1523/JNEUROSCI.21-20-07993.2001. Retrieved from http://www.jneurosci.org/content/21/20/7993.long. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Fayuk D, Yakel JL. Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurons. Molecular Pharmacology. 2004;66:658–666. doi: 10.1124/mol.104.000042. doi:10.1124/mol.104.000042. [DOI] [PubMed] [Google Scholar]
  29. Fayuk D, Yakel JL. Ca2+ permeability of nicotinic acetylcholine receptors in rat hippocampal CA1 interneurones. Journal of Physiology. 2005;566:759–768. doi: 10.1113/jphysiol.2005.089789. doi:10.1113/jphysiol.2005.089789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Fiacco TA, Agulhon C, McCarthy KD. Sorting out astrocyte physiology from pharmacology. Annual Review of Pharmacology and Toxicology. 2009;49:151–174. doi: 10.1146/annurev.pharmtox.011008.145602. doi:10.1146/annurev.pharmtox.011008.145602. [DOI] [PubMed] [Google Scholar]
  31. Fodale V, Quattrone D, Trecroci C, Caminiti V, Santamaria LB. Alzheimer’s disease and anaesthesia: Implications for the central cholinergic system. British Journal of Anaesthesia. 2006;97:445–452. doi: 10.1093/bja/ael233. doi:10.1093/bja/ael233. [DOI] [PubMed] [Google Scholar]
  32. Frazier CJ, Buhler AV, Weiner JL, Dunwiddie TV. Synaptic potentials mediated via α-bungarotoxinsensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. Journal of Neuroscience. 1998;18:8228–8235. doi: 10.1523/JNEUROSCI.18-20-08228.1998. Retrieved from http://www.jneurosci.org/content/18/20/8228.long. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Frazier CJ, Rollins YD, Breese CR, Leonard S, Freedman R, Dunwiddie TV. Acetylcholine activates an α-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. Journal of Neuroscience. 1998;18:1187–1195. doi: 10.1523/JNEUROSCI.18-04-01187.1998. Retrieved from http://www.jneurosci.org/content/18/4/1187.long. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Freund TF, Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 1988;336:170–173. doi: 10.1038/336170a0. doi:10.1038/336170a0. [DOI] [PubMed] [Google Scholar]
  35. Frotscher M, Léránth C. Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: A combined light and electronmicroscopic study. Journal of Comparative Neurology. 1985;239:237–246. doi: 10.1002/cne.902390210. [DOI] [PubMed] [Google Scholar]
  36. Fujii S, Ji Z, Morita N, Sumikawa K. Acute and chronic nicotine exposure differentially facilitate the induction of LTP. Brain Research. 1999;846:137–143. doi: 10.1016/s0006-8993(99)01982-4. doi:10.1016/S0006-8993(99)01982-4. [DOI] [PubMed] [Google Scholar]
  37. Fujii S, Sumikawa K. Nicotine accelerates reversal of long-term potentiation and enhances long-term depression in the rat hippocampal CA1 region. Brain Research. 2001;894:340–346. doi: 10.1016/s0006-8993(01)02058-3. doi:10.1016/S0006-8993(01)02058-3. [DOI] [PubMed] [Google Scholar]
  38. Ge S, Dani JA. Nicotinic acetylcholine receptors at glutamate synapses facilitate long-term depression or potentiation. Journal of Neuroscience. 2005;25:6084–6091. doi: 10.1523/JNEUROSCI.0542-05.2005. doi:10.1523/JNEUROSCI.0542-05.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell. 2010;141:154–165. doi: 10.1016/j.cell.2010.02.037. doi:10.1016/j.cell.2010.02.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Griguoli M, Cherubini E. Regulation of hippocampal inhibitory circuits by nicotinic acetylcholine receptors. Journal of Physiology. 2011;590:655–666. doi: 10.1113/jphysiol.2011.220095. doi:10.1113/jphysiol.2011.220095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA. Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature. 1996;383:713–716. doi: 10.1038/383713a0. doi:10.1038/383713a0. [DOI] [PubMed] [Google Scholar]
  42. Gu Z, Yakel JL. Timing-dependent septal cholinergic induction of dynamic hippocampal synaptic plasticity. Neuron. 2011;71:155–165. doi: 10.1016/j.neuron.2011.04.026. doi:10.1016/j.neuron.2011.04.026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews. Molecular Cell Biology. 2007;8:101–112. doi: 10.1038/nrm2101. doi:10.1038/nrm2101. [DOI] [PubMed] [Google Scholar]
  44. Harich S, Kinfe T, Koch M, Schwabe K. Neonatal lesions of the entorhinal cortex induce long-term changes of limbic brain regions and maze learning deficits in adult rats. Neuroscience. 2008;153:918–928. doi: 10.1016/j.neuroscience.2008.03.017. doi:10.1016/j.neuroscience.2008.03.017. [DOI] [PubMed] [Google Scholar]
  45. Hasselmo ME. Neuromodulation and the hippocampus: Memory function and dysfunction in a network simulation. Progress in Brain Research. 1999;121:3–18. doi: 10.1016/s0079-6123(08)63064-2. [DOI] [PubMed] [Google Scholar]
  46. Hasselmo ME. The role of hippocampal regions CA3 and CA1 in matching entorhinal input with retrieval of associations between objects and context: Theoretical comment on Lee et al. (2005) Behavioral Neuroscience. 2005;119:342–345. doi: 10.1037/0735-7044.119.1.342. doi:10.1037/0735-7044.119.1.342. [DOI] [PubMed] [Google Scholar]
  47. He J, Deng CY, Zhu XN, Yu JP, Chen RZ. Different synaptic mechanisms of long-term potentiation induced by nicotine and tetanic stimulation in hippocampal CA1 region of rats. Acta Pharmacologica Sinica. 2003;24:398–402. [PubMed] [Google Scholar]
  48. Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, et al. AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron. 2006;52:831–843. doi: 10.1016/j.neuron.2006.10.035. doi:10.1016/j.neuron.2006.10.035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Hunsaker MR, Lee B, Kesner RP. Evaluating the temporal context of episodic memory: The role of CA3 and CA1. Behavioral Brain Research. 2008;188:310–315. doi: 10.1016/j.bbr.2007.11.015. doi:10.1016/j.bbr.2007.11.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Hunter BE, de Fiebre CM, Papke RL, Kem WR, Meyer EM. A novel nicotinic agonist facilitates induction of long-term potentiation in the rat hippocampus. Neuroscience Letters. 1994;168:130–134. doi: 10.1016/0304-3940(94)90433-2. [DOI] [PubMed] [Google Scholar]
  51. Izquierdo I, Cammarota M, Silva WC, Bevilaqua LR, Rossato JI, Bonini JS, et al. The evidence for hippocampal long-term potentiation as a basis of memory for simple tasks. Anais da Academia Brasileira de Ciências. 2008;80:115–127. doi: 10.1590/s0001-37652008000100007. doi:10.1590/S0001-37652008000100007. [DOI] [PubMed] [Google Scholar]
  52. Jerusalinsky D, Kornisiuk E, Izquierdo I. Cholinergic neurotransmission and synaptic plasticity concerning memory processing. Neurochemical Research. 1997;22:507–515. doi: 10.1023/a:1027376230898. Retrieved from http://www.ingentaconnect.com/content/klu/nere/1997/00000022/00000004/00421942?token=00561a6a45f3b18bb87e442f2067217d763b252c3a7b462d4072687627502b333e3568263c2b149d46697a. [DOI] [PubMed] [Google Scholar]
  53. Ji D, Lape R, Dani JA. Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron. 2001;31:131–141. doi: 10.1016/s0896-6273(01)00332-4. doi:10.1016/S0896-6273(01)00332-4. [DOI] [PubMed] [Google Scholar]
  54. Jones S, Sudweeks S, Yakel JL. Nicotinic receptors in the brain: Correlating physiology with function. Trends in Neuroscience. 1999;22:555–561. doi: 10.1016/s0166-2236(99)01471-x. doi:10.1016/S0166-2236(99)01471-X. [DOI] [PubMed] [Google Scholar]
  55. Jones S, Yakel JL. Functional nicotinic ACh receptors on interneurones in the rat hippocampus. Journal of Physiology. 1997;504:603–610. doi: 10.1111/j.1469-7793.1997.603bd.x. Retrieved from http://jp.physoc.org/content/504/Pt_3/603.long. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Jonnala RR, Buccafusco JJ. Relationship between the increased cell surface α7 nicotinic receptor expression and neuroprotection induced by several nicotinic receptor agonists. Journal of Neuroscience Research. 2001;66:565–572. doi: 10.1002/jnr.10022. doi:10.1002/jnr.10022. [DOI] [PubMed] [Google Scholar]
  57. Kenney JW, Gould TJ. Modulation of hippocampus-dependent learning and synaptic plasticity by nicotine. Molecular Neurobiology. 2008;38:101–121. doi: 10.1007/s12035-008-8037-9. doi:10.1007/s12035-008-8037-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Khiroug L, Giniatullin R, Klein RC, Fayuk D, Yakel JL. Functional mapping and Ca2+ regulation of nicotinic acetylcholine receptor channels in rat hippocampal CA1 neurons. Journal of Neuroscience. 2003;23:9024–9031. doi: 10.1523/JNEUROSCI.23-27-09024.2003. Retrieved from http://www.jneurosci.org/content/23/27/9024.long. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, et al. α7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. Journal of Biological Chemistry. 2001;276:13541–13546. doi: 10.1074/jbc.M008035200. doi:10.1074/jbc.M008035200. [DOI] [PubMed] [Google Scholar]
  60. Kihara T, Shimohama S, Sawada H, Kimura J, Kume T, Kochiyama H, et al. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Annals of Neurology. 1997;42:159–163. doi: 10.1002/ana.410420205. [DOI] [PubMed] [Google Scholar]
  61. Klein RC, Yakel JL. Paired-pulse potentiation of α7-containing nAChRs in rat hippocampal CA1 stratum radiatum interneurones. Journal of Physiology. 2005;568:881–889. doi: 10.1113/jphysiol.2005.096081. doi:10.1113/jphysiol.2005.096081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Lawrence JJ, Grinspan ZM, Statland JM, McBain CJ. Muscarinic receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability. Journal of Physiology. 2006;571:555–562. doi: 10.1113/jphysiol.2005.103218. doi:10.1113/jphysiol.2005.103218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Lawrence JJ, Statland JM, Grinspan ZM, McBain CJ. Cell type-specific dependence of muscarinic signalling in mouse hippocampal stratum oriens interneurones. Journal of Physiology. 2006;570:595–610. doi: 10.1113/jphysiol.2005.100875. doi:10.1113/jphysiol.2005.100875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Lee I, Hunsaker MR, Kesner RP. The role of hippocampal subregions in detecting spatial novelty. Behavioral Neuroscience. 2005;119:145–153. doi: 10.1037/0735-7044.119.1.145. [DOI] [PubMed] [Google Scholar]
  65. Léránth C, Frotscher M. Cholinergic innervation of hippocampal GAD- and somatostatin-immunoreactive commissural neurons. Journal of Comparative Neurology. 1987;261:33–47. doi: 10.1002/cne.902610104. [DOI] [PubMed] [Google Scholar]
  66. Levin ED. Nicotinic receptor subtypes and cognitive function. Journal of Neurobiology. 2002;53:633–640. doi: 10.1002/neu.10151. doi:10.1002/neu.10151. [DOI] [PubMed] [Google Scholar]
  67. Levin ED, McClernon FJ, Rezvani AH. Nicotinic effects on cognitive function: Behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology (Berlin) 2006;184:523–539. doi: 10.1007/s00213-005-0164-7. doi:10.1007/s00213-005-0164-7. [DOI] [PubMed] [Google Scholar]
  68. Levin ED, Petro A, Rezvani AH, Pollard N, Christopher NC, Strauss M, et al. Nicotinic α7- or β2-containing receptor knockout: Effects on radial-arm maze learning and long-term nicotine consumption in mice. Behavioural Brain Research. 2009;196:207–213. doi: 10.1016/j.bbr.2008.08.048. doi:10.1016/j.bbr.2008.08.048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Levin ED, Rezvani AH. Nicotinic treatment for cognitive dysfunction. Current Drug Targets CNS Neurological Disorders. 2002;1:423–431. doi: 10.2174/1568007023339102. [DOI] [PubMed] [Google Scholar]
  70. Leung LS, Shen B, Rajakumar N, Ma J. Cholinergic activity enhances hippocampal long-term potentiation in CA1 during walking in rats. Journal of Neuroscience. 2003;23:9297–9304. doi: 10.1523/JNEUROSCI.23-28-09297.2003. Retrieved from http://www.jneurosci.org/content/23/28/9297.long. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Li JS, Chao YS. Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats. Neurobiology of Learning and Memory. 2008;89:192–198. doi: 10.1016/j.nlm.2007.06.006. doi:10.1016/j.nlm.2007.06.006. [DOI] [PubMed] [Google Scholar]
  72. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. American Journal of Pathology. 1999;155:853–862. doi: 10.1016/s0002-9440(10)65184-x. doi:10.1016/S0002–9440(10)65184-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Mann EO, Greenfield SA. Novel modulatory mechanisms revealed by the sustained application of nicotine in the guinea-pig hippocampus in vitro. Journal of Physiology. 2003;551:539–550. doi: 10.1113/jphysiol.2003.045492. doi:10.1113/jphysiol.2003.045492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Martin-Fardon R, Ciccocioppo R, Aujla H, Weiss F. The dorsal subiculum mediates the acquisition of conditioned reinstatement of cocaine-seeking. Neuropsychopharmacology. 2007;33:1827–1834. doi: 10.1038/sj.npp.1301589. doi:10.1038/sj.npp.1301589. [DOI] [PubMed] [Google Scholar]
  75. Matsuyama S, Matsumoto A, Enomoto T, Nishizaki T. Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. European Journal of Neuroscience. 2000;12:3741–3747. doi: 10.1046/j.1460-9568.2000.00259.x. doi:10.1046/j.1460-9568.2000.00259.x. [DOI] [PubMed] [Google Scholar]
  76. Maylie J, Adelman JP. Cholinergic signaling through synaptic SK channels: It’s a protein kinase but which one? Neuron. 2010;68:809–811. doi: 10.1016/j.neuron.2010.11.037. doi:10.1016/j.neuron.2010.11.037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. McGehee DS. Nicotinic receptors and hippocampal synaptic plasticity … it’s all in the timing. Trends in Neuroscience. 2002;25:171–172. doi: 10.1016/s0166-2236(00)02127-5. [DOI] [PubMed] [Google Scholar]
  78. McGehee DS, Role LW. Neurobiology: Memories of nicotine. Nature. 1996;383:670–671. doi: 10.1038/383670a0. doi:10.1038/383670a0. [DOI] [PubMed] [Google Scholar]
  79. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, et al. Soluble pool of A beta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Annals of Neurology. 1999;46:860–866. doi: 10.1002/1531-8249(199912)46:6<860::aid-ana8>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  80. McQuiston AR, Madison DV. Nicotinic receptor activation excites distinct subtypes of interneurons in the rat hippocampus. Journal of Neuroscience. 1999;19:2887–2896. doi: 10.1523/JNEUROSCI.19-08-02887.1999. Retrieved from http://www.jneurosci.org/content/19/8/2887.long. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Nashmi R, Xiao C, Deshpande P, McKinney S, Grady SR, Whiteaker P, et al. Chronic nicotine cell specifically upregulates functional alpha 4 nicotinic receptors: Basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. Journal of Neuroscience. 2007;27:8202–8218. doi: 10.1523/JNEUROSCI.2199-07.2007. doi:10.1523/JNEUROSCI.2199-07.2007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. O’Mara SM, Commins S, Anderson M, Gigg J. The subiculum: A review of form, physiology and function. Progress in Neurobiology. 2001;64:129–155. doi: 10.1016/s0301-0082(00)00054-x. doi:10.1016/S0301-0082(00)00054-X. [DOI] [PubMed] [Google Scholar]
  83. Ovsepian SV, Anwyl R, Rowan MJ. Endogenous acetylcholine lowers the threshold for long-term potentiation induction in the CA1 area through muscarinic receptor activation: In vivo study. European Journal of Neuroscience. 2004;20:1267–1275. doi: 10.1111/j.1460-9568.2004.03582.x. doi:10.1111/j.1460-9568.2004.03582.x. [DOI] [PubMed] [Google Scholar]
  84. Park HJ, Lee PH, Ahn YW, Choi YJ, Lee G, Lee DY, et al. Neuroprotective effect of nicotine on dopaminergic neurons by anti-inflammatory action. European Journal of Neuroscience. 2007;26:79–89. doi: 10.1111/j.1460-9568.2007.05636.x. doi:10.1111/j.1460-9568.2007.05636.x. [DOI] [PubMed] [Google Scholar]
  85. Parri HR, Hernandez CM, Dineley KT. Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochemical Pharmacology. 2011;82:931–942. doi: 10.1016/j.bcp.2011.06.039. doi:10.1016/j.bcp.2011.06.039. [DOI] [PubMed] [Google Scholar]
  86. Peeke SC, Peeke HV. Attention, memory, and cigarette smoking. Psychopharmacology (Berlin) 1984;84:205–216. doi: 10.1007/BF00427447. [DOI] [PubMed] [Google Scholar]
  87. Potter AS, Newhouse PA. Acute nicotine improves cognitive deficits in young adults with attention-deficit/hyperactivity disorder. Pharmacology, Biochemistry, and Behavior. 2008;88:407–417. doi: 10.1016/j.pbb.2007.09.014. doi:10.1016/j.pbb.2007.09.014. [DOI] [PubMed] [Google Scholar]
  88. Power AE, Vazdarjanova A, McGaugh JL. Muscarinic cholinergic influences in memory consolidation. Neurobiology of Learning and Memory. 2003;80:178–193. doi: 10.1016/s1074-7427(03)00086-8. doi:10.1016/S1074-7427(03)00086-8. [DOI] [PubMed] [Google Scholar]
  89. Quik M, Bordia T, O’Leary K. Nicotinic receptors as CNS targets for Parkinson’s disease. Biochemical Pharmacology. 2007;74:1224–1234. doi: 10.1016/j.bcp.2007.06.015. doi:10.1016/j.bcp.2007.06.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Quik M, Cox H, Parameswaran N, O’Leary K, Langston JW, Di Monte D. Nicotine reduces levodopa-induced dyskinesias in lesioned monkeys. Annals of Neurology. 2007;62:588–596. doi: 10.1002/ana.21203. doi:10.1002/ana.21203. [DOI] [PubMed] [Google Scholar]
  91. Reis HJ, Guatimosim C, Paquet M, Santos M, Ribeiro FM, Kummer A, et al. Neurotransmitters in the central nervous system & their implication in learning and memory processes. Current Medicinal Chemistry. 2009;16:796–840. doi: 10.2174/092986709787549271. Retrieved from http://www.benthamdirect.org/pages/content.php?CMC/2009/00000016/00000007/0002C.SGM. [DOI] [PubMed] [Google Scholar]
  92. Sargent PB. The diversity of neuronal nicotinic acetylcholine receptors. Annual Review of Neuroscience. 1993;16:403–443. doi: 10.1146/annurev.ne.16.030193.002155. doi:10.1146/annurev.ne.16.030193.002155. [DOI] [PubMed] [Google Scholar]
  93. Sawada S, Yamamoto C, Ohno-Shosaku T. Long-term potentiation and depression in the dentate gyrus, and effects of nicotine. Neuroscience Research. 1994;20:323–329. doi: 10.1016/0168-0102(94)90054-x. [DOI] [PubMed] [Google Scholar]
  94. Seeger T, Fedorova I, Zheng F, Miyakawa T, Koustova E, Gomeza J, et al. M2 muscarinic acetylcholine receptor knock-out mice show deficits in behavioral flexibility, working memory, and hippocampal plasticity. Journal of Neuroscience. 2004;24:10117–10127. doi: 10.1523/JNEUROSCI.3581-04.2004. doi:10.1523/JNEUROSCI.3581-04.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298:789–791. doi: 10.1126/science.1074069. doi:10.1126/science.1074069. [DOI] [PubMed] [Google Scholar]
  96. Sharma G, Vijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proceedings of the National Academy of Sciences of the United States of America. 2001;98:4148–4153. doi: 10.1073/pnas.071540198. doi:10.1073/pnas.071540198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Shytle RD, Mori T, Townsend K, Vendrame M, Sun N, Zeng J, et al. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. Journal of Neurochemistry. 2004;89:337–343. doi: 10.1046/j.1471-4159.2004.02347.x. doi:10.1046/j.1471-4159.2004.02347.x. [DOI] [PubMed] [Google Scholar]
  98. Silberberg G, Wu C, Markram H. Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit. Journal of Physiology. 2004;556:19–27. doi: 10.1113/jphysiol.2004.060962. doi:10.1113/jphysiol.2004.060962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Shen JX, Yakel JL. Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacologica Sinica. 2009;30:673–680. doi: 10.1038/aps.2009.64. doi:10.1038/aps.2009.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Shin EJ, Chae JS, Jung ME, Bing G, Ko KH, Kim WK, et al. Repeated intracerebroventricular infusion of nicotine prevents kainate-induced neurotoxicity by activating the alpha7 nicotinic acetylcholine receptor. Epilepsy Research. 2007;73:292–298. doi: 10.1016/j.eplepsyres.2006.11.004. doi:10.1016/j.eplepsyres.2006.11.004. [DOI] [PubMed] [Google Scholar]
  101. Stevens TR, Krueger SR, Fitzsimonds RM, Picciotto MR. Neuroprotection by nicotine in mouse primary cortical cultures involves activation of calcineurin and L-type calcium channel inactivation. Journal of Neuroscience. 2003;23:10093–10099. doi: 10.1523/JNEUROSCI.23-31-10093.2003. Retrieved from http://www.jneurosci.org/content/23/31/10093.long. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Stewart M, Fox SE. Do septal neurons pace the hippocampal theta rhythm? Trends in Neuroscience. 1990;13:163–168. doi: 10.1016/0166-2236(90)90040-h. doi:10.1016/0166-2236(90)90040-H. [DOI] [PubMed] [Google Scholar]
  103. Sudweeks S, Yakel JL. Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons. Journal of Physiology. 2000;527:515–528. doi: 10.1111/j.1469-7793.2000.00515.x. doi:10.1111/j.1469-7793.2000.00515.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Svensson AL, Nordberg A. Beta-estradiol attenuate amyloid beta-peptide toxicity via nicotinic receptors. Neuroreport. 1999;10:3485–3489. doi: 10.1097/00001756-199911260-00004. Retrieved from http://ovidsp.tx.ovid.com/sp-3.5.1a/ovidweb.cgi?T=JS&PAGE=fulltext&D=ovft&AN=00001756-199911260-00004&NEWS=N&CSC=Y&CHANNEL=PubMed. [DOI] [PubMed] [Google Scholar]
  105. Swan GE, Lessov-Schlaggar CN. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychology Review. 2007;17:259–273. doi: 10.1007/s11065-007-9035-9. doi:10.1007/s11065-007-9035-9. [DOI] [PubMed] [Google Scholar]
  106. Terry AV, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: Recent challenges and their implications for novel drug development. Journal of Pharmacology and Experimental Therapeutics. 2003;306:821–827. doi: 10.1124/jpet.102.041616. doi:10.1124/jpet.102.041616. [DOI] [PubMed] [Google Scholar]
  107. Timmermann DB, Gronlien JH, Kohlhaas KL, Nielsen EO, Dam E, Jorgensen TD, et al. An allosteric modulator of the alpha7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo. Journal of Pharmacology and Experimental Therapeutics. 2007;323:294–307. doi: 10.1124/jpet.107.120436. doi:10.1124/jpet.107.120436. [DOI] [PubMed] [Google Scholar]
  108. Tizabi Y. Nicotine and nicotinic system in hypoglutamatergic models of schizophrenia. Neurotoxicity Research. 2007;12:233–246. doi: 10.1007/BF03033907. Retrieved from http://www.springer.com/biomed/neuroscience/journal/12640?hideChart=1#realtime. [DOI] [PubMed] [Google Scholar]
  109. Tóth K, Freund TF, Miles R. Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. Journal of Physiology. 1997;500:463–474. doi: 10.1113/jphysiol.1997.sp022033. Retrieved from http://jp.physoc.org/content/500/Pt_2/463.long. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science. 2009;324:1080–1084. doi: 10.1126/science.1168878. doi:10.1126/science.1168878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Tu B, Gu Z, Shen JX, Lamb PW, Yakel JL. Characterization of a nicotine-sensitive neuronal population in rat entorhinal cortex. Journal of Neuroscience. 2009;29:10436–10448. doi: 10.1523/JNEUROSCI.2580-09.2009. doi:10.1523/JNEUROSCI.2580-09.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA. Review: Cholinergic mechanisms and epileptogenesis. The seizures induced by pilocarpine: A novel experimental model of intractable epilepsy. Synapse. 1989;3:154–171. doi: 10.1002/syn.890030207. [DOI] [PubMed] [Google Scholar]
  113. Tyagi E, Agrawal R, Nath C, Shukla R. Inhibitory role of cholinergic system mediated via α7 nicotinic acetylcholine receptor in LPS-induced neuro-inflammation. Innate Immunity. 2010;16:3–13. doi: 10.1177/1753425909104680. doi:10.1177/1753425909104680. [DOI] [PubMed] [Google Scholar]
  114. Van Cauter T, Poucet B, Save E. Delay-dependent involvement of the rat entorhinal cortex in habituation to a novel environment. Neurobiology of Learning and Memory. 2008;90:192–199. doi: 10.1016/j.nlm.2008.03.001. doi:10.1016/j.nlm.2008.03.001. [DOI] [PubMed] [Google Scholar]
  115. Vélez-Fort M, Audinat E, Angulo MC. Functional alpha7-containing nicotinic receptors of NG2-expressing cells in the hippocampus. Glia. 2009;57:1104–1114. doi: 10.1002/glia.20834. doi:10.1002/glia.20834. [DOI] [PubMed] [Google Scholar]
  116. Villafane G, Cesaro P, Rialland A, Baloul S, Azimi S, Bourdet C, et al. Chronic high dose transdermal nicotine in Parkinson’s disease: An open trial. European Journal of Neurology. 2007;14:1313–1316. doi: 10.1111/j.1468-1331.2007.01949.x. doi:10.1111/j.1468-1331.2007.01949.x. [DOI] [PubMed] [Google Scholar]
  117. Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, et al. Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat. Journal of Comparative Neurology. 1989;284:314–335. doi: 10.1002/cne.902840212. [DOI] [PubMed] [Google Scholar]
  118. Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, et al. Nicotinic acetylcholine receptor α7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–388. doi: 10.1038/nature01339. doi:10.1038/nature01339. [DOI] [PubMed] [Google Scholar]
  119. Welsby P, Rowan M, Anwyl R. Nicotinic receptor-mediated enhancement of long-term potentiation involves activation of metabotropic glutamate receptors and ryanodine-sensitive calcium stores in the dentate gyrus. European Journal of Neuroscience. 2006;24:3109–3118. doi: 10.1111/j.1460-9568.2006.05187.x. doi:10.1111/j.1460-9568.2006.05187.x. [DOI] [PubMed] [Google Scholar]
  120. Welsby PJ, Rowan MJ, Anwyl R. Beta-amyloid blocks high frequency stimulation induced LTP but not nicotine enhanced LTP. Neuropharmacology. 2007;53:188–195. doi: 10.1016/j.neuropharm.2007.05.013. doi:10.1016/j.neuropharm.2007.05.013. [DOI] [PubMed] [Google Scholar]
  121. Witten IB, Lin SC, Brodsky M, Prakash R, Diester I, Anikeeva P, et al. Cholinergic interneurons control local circuit activity and cocaine conditioning. Science. 2010;330:1677–1681. doi: 10.1126/science.1193771. doi:10.1126/science.1193771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Zhang LI, Tao HW, Holt CE, Harris WA, Poo M. A critical window for cooperation and competition among developing retinotectal synapses. Nature. 1998;395:37–44. doi: 10.1038/25665. doi:10.1038/25665. [DOI] [PubMed] [Google Scholar]

Articles from Nicotine & Tobacco Research are provided here courtesy of Oxford University Press

RESOURCES