Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jan;77(1):62–66. doi: 10.1073/pnas.77.1.62

Isozymes of human phosphofructokinase: Identification and subunit structural characterization of a new system

Shobhana Vora 1,*, Carol Seaman 1,*, Susan Durham 1,*, Sergio Piomelli 1,*
PMCID: PMC348208  PMID: 6444721

Abstract

The existence of a five-membered isozyme system for human phosphofructokinase (PFK; ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) has been demonstrated. These multimolecular forms result from the random polymerization of two distinct subunits, M (muscle type) and L (liver type), to form all possible tetrameters—i.e., M4, M3L, M2L2, ML3, and L4. Partially purified muscle and liver PFKs were hybridized by dissociation at low pH and then recombination at neutrality. Three hybrid species were generated in addition to the two parental isozymes, to yield an entire five-membered set. The various species could be consistently and reproducibly separated from one another by DEAE-Sephadex chromatography at pH 8.0 with a concave elution gradient of salt. Under similar experimental conditions, erythrocyte PFK from hemolysates was also resolved into five species chromatographically indistinguishable from those produced in the above experiment. Immunological and kinetic studies of the isozymes provided corroborative evidence to support the proposed subunit structures. Erythrocyte PFK was found to have kinetic properties intermediate between those of muscle and liver PFK and was neutralized only 50% by an antiserum against muscle PFK that completely neutralized muscle PFK. These data demonstrate that muscle and liver PFKs are distinct homotetramers—i.e., M4 and L4, respectively—whereas erythrocyte PFK is a heterogeneous mixture of all five isozymes. The structural heterogeneity of erythrocyte PFK provides a molecular genetic basis for the differential organ involvement observed in some inherited PFK deficiency states in which myopathy or hemolysis or both can occur.

Keywords: hemolytic anemia, myopathy, in vitro protein hybridization, column chromatography

Full text

PDF
62

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boulard M. R., Meienhofer M. C., Bois M., Reviron M., Najean Y. Letter: Red-cell phosphofructokinase deficiency. N Engl J Med. 1974 Oct 31;291(18):978–979. doi: 10.1056/nejm197410312911819. [DOI] [PubMed] [Google Scholar]
  2. Brock D. J. Purification and properties of sheep liver phosphofructokinase. Biochem J. 1969 Jun;113(2):235–242. doi: 10.1042/bj1130235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Coffee C. J., Aaronson R. P., Frieden C. Rabbit muscle phosphofructokinase: studies of the subunit molecular weight and structure. Isolation of carboxymethylated cysteinyl peptides and sedimentation equilibrium studies. J Biol Chem. 1973 Feb 25;248(4):1381–1387. [PubMed] [Google Scholar]
  4. Hofmann E., Kurganov B. I., Schellenberger W., Schulz J., Sparmann G., Wenzel K. W., Zimmermann G. Association-dissociation behavior of erythrocyte phosphofructokinase and tumor pyruvate kinase. Adv Enzyme Regul. 1975;13:247–277. doi: 10.1016/0065-2571(75)90019-9. [DOI] [PubMed] [Google Scholar]
  5. Kahn A., Etiemble J., Meienhofer M. C., Bovin P. Erythrocyte phosphofructokinase deficiency associated with an unstable variant of muscle phosphofructokinase. Clin Chim Acta. 1975 Jun 20;61(3):415–419. doi: 10.1016/0009-8981(75)90434-9. [DOI] [PubMed] [Google Scholar]
  6. Karadsheh N. S., Uyeda K., Oliver R. M. Studies on structure of human erythrocyte phosphofructokinase. J Biol Chem. 1977 May 25;252(10):3515–3524. [PubMed] [Google Scholar]
  7. Kaur J., Layzer R. B. Nonidentical subunits of human erythrocyte phosphofructokinase. Biochem Genet. 1977 Dec;15(11-12):1133–1142. doi: 10.1007/BF00484503. [DOI] [PubMed] [Google Scholar]
  8. Kemp R. G. Phosphofructokinase from rabbit skeletal muscle. Methods Enzymol. 1975;42:71–77. doi: 10.1016/0076-6879(75)42096-1. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Layzer R. B., Conway M. M. Multiple isoenzymes of human phosphofructokinase. Biochem Biophys Res Commun. 1970 Sep 30;40(6):1259–1265. doi: 10.1016/0006-291x(70)90002-1. [DOI] [PubMed] [Google Scholar]
  11. Layzer R. B., Rasmussen J. The molecular basis of muscle phosphofructokinase deficiency. Arch Neurol. 1974 Dec;31(6):411–417. doi: 10.1001/archneur.1974.00490420077009. [DOI] [PubMed] [Google Scholar]
  12. Layzer R. B., Rowland L. P., Bank W. J. Physical and kinetic properties of human phosphofructokinase from skeletal muscle and erythrocytes. J Biol Chem. 1969 Jul 25;244(14):3823–3831. [PubMed] [Google Scholar]
  13. Layzer R. B., Rowland L. P., Ranney H. M. Muscle phosphofructokinase deficiency. Arch Neurol. 1967 Nov;17(5):512–523. doi: 10.1001/archneur.1967.00470290066009. [DOI] [PubMed] [Google Scholar]
  14. Lee L. M. Purification and some properties of phosphofructokinase from human erythrocytes. Arch Biochem Biophys. 1972 Feb;148(2):607–613. doi: 10.1016/0003-9861(72)90180-4. [DOI] [PubMed] [Google Scholar]
  15. MANSOUR T. E. STUDIES ON HEART PHOSPHOFRUCTOKINASE. ACTIVE AND INACTIVE FORMS OF THE ENZYME. J Biol Chem. 1965 May;240:2165–2172. [PubMed] [Google Scholar]
  16. Minakami S., Yoshikawa H. Studies on erythrocyte glycolysis. II. Free energy changes and rate limitings steps in erythrocyte glycolysis. J Biochem. 1966 Feb;59(2):139–144. doi: 10.1093/oxfordjournals.jbchem.a128274. [DOI] [PubMed] [Google Scholar]
  17. Miwa S., Sato T., Murao H., Kozuru M., Ibayashi H. A new type of phosphofructokinase deficiency hereditary nonspherocytic hemolytic anemia. Nihon Ketsueki Gakkai Zasshi. 1972 Feb;35(1):113–118. [PubMed] [Google Scholar]
  18. Paetkau V., Lardy H. A. Phosphofructokinase. Correlation of physical and enzymatic properties. J Biol Chem. 1967 May 10;242(9):2035–2042. [PubMed] [Google Scholar]
  19. Ramadoss C. S., Luby L. J., Uyeda K. Affinity chromatography of phosphofructokinase. Arch Biochem Biophys. 1976 Aug;175(2):487–494. doi: 10.1016/0003-9861(76)90536-1. [DOI] [PubMed] [Google Scholar]
  20. Rose I. A., Warms J. V. Control of glycolysis in the human red blood cell. J Biol Chem. 1966 Nov 10;241(21):4848–4854. [PubMed] [Google Scholar]
  21. Staal G. E., Koster J. F., Bänziger C. J., van Milligen-Boersma L. Human erythrocyte phosphofructokinase: its purification and some properties. Biochim Biophys Acta. 1972 Jul 13;276(1):113–123. doi: 10.1016/0005-2744(72)90013-7. [DOI] [PubMed] [Google Scholar]
  22. TARUI S., OKUNO G., IKURA Y., TANAKA T., SUDA M., NISHIKAWA M. PHOSPHOFRUCTOKINASE DEFICIENCY IN SKELETAL MUSCLE. A NEW TYPE OF GLYCOGENOSIS. Biochem Biophys Res Commun. 1965 May 3;19:517–523. doi: 10.1016/0006-291x(65)90156-7. [DOI] [PubMed] [Google Scholar]
  23. Tanaka T., An T., Sakaue Y. Studies on multimolecular forms of phosphofructokinase in rat tissues. J Biochem. 1971 Mar;69(3):609–612. [PubMed] [Google Scholar]
  24. Tarui S., Kono N., Nasu T., Nishikawa M. Enzymatic basis for the coexistence of myopathy and hemolytic disease in inherited muscle phosphofructokinase deficiency. Biochem Biophys Res Commun. 1969 Jan 6;34(1):77–83. doi: 10.1016/0006-291x(69)90531-2. [DOI] [PubMed] [Google Scholar]
  25. Taylor C. B., Bew M. The distribution of two chromatographically distinguishable forms of phosphofructokinase in the tissues of the rat. Biochem J. 1970 Oct;119(4):797–799. doi: 10.1042/bj1190797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tsai M. Y., Kemp R. G. Hybridization of rabbit muscle and liver phosphofructokinases. Arch Biochem Biophys. 1972 Jun;150(2):407–411. doi: 10.1016/0003-9861(72)90056-2. [DOI] [PubMed] [Google Scholar]
  27. Tsai M. Y., Kemp R. G. Isozymes of rabbit phosphofructokinase. Electrophoretic and immunochemical studies. J Biol Chem. 1973 Feb 10;248(3):785–792. [PubMed] [Google Scholar]
  28. Tsai M. Y., Kemp R. G. Rabbit brain phosphofructokinase. Comparison of regulatory properties with those of other phosphofructokinase isozymes. J Biol Chem. 1974 Oct 25;249(20):6590–6596. [PubMed] [Google Scholar]
  29. Waterbury L., Frenkel E. P. Hereditary nonspherocytic hemolysis with erythrocyte phosphofructokinase deficiency. Blood. 1972 Mar;39(3):415–425. [PubMed] [Google Scholar]
  30. Wenzel K. -W., Gauer J., Zimmermann G., Hofmann E. Purification of human erythrocyte phosphofructokinase. FEBS Lett. 1972 Jan 1;19(4):281–284. doi: 10.1016/0014-5793(72)80060-7. [DOI] [PubMed] [Google Scholar]
  31. Wenzel K. -W., Zimmermann G., Gauer J., Diezel W., Liebe S., Hofmann E. Evidence for different oligomeric forms of human erythrocyte phosphofructokinase. FEBS Lett. 1972 Jan 1;19(4):285–289. doi: 10.1016/0014-5793(72)80061-9. [DOI] [PubMed] [Google Scholar]
  32. Zimmermann G., Wenzel K. W., Gauer J., Hofmann E. Studies on the association behaviour of human-erythrocyte phosphofructokinase. Eur J Biochem. 1973 Dec 17;40(2):501–505. doi: 10.1111/j.1432-1033.1973.tb03219.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES