Abstract
In this paper, we examined the influence exerted by calcium ions upon physical properties of lipids constituting an artificial membrane. Our strategy was to study changes on alamethicin oligomer kinetic features embedded into such an artificial membrane. At neutral pH and in the presence of calcium ions, we observed an increase in the number of alamethicin monomers that oligomerize within the membrane, forming a multi-substate nanopore. We make the argument that calcium ions binding within the interface between the hydrophobic and the hydrophilic regions of the biomembrane causes a sizeable alteration of the physical properties of neutral lipid membranes. This in turn is seen to influence the translocation rates of alamethicin monomers from the solution adjacent to the biomembrane and leads to an augmentation in the subunit composition of the alamethicin oligomers, leaving the electrical conductance of the substates and their kinetics mainly unchanged.
Key words: alamethicin, phospholipids, calcium, electrophysiology
Full Text
The Full Text of this article is available as a PDF (321.2 KB).
References
- 1.Parsegian A. Ion–Membrane Interactions as Structural Forces. Ann. N. Y. Acad. Sci. 1975;264:161–171. doi: 10.1111/j.1749-6632.1975.tb31481.x. [DOI] [PubMed] [Google Scholar]
- 2.Kuyucak S., Andersen O.S., Chung S.-H. Models of Permeation in Ion Channels. Rep. Prog. Phys. 2001;64:1427–1472. doi: 10.1088/0034-4885/64/11/202. [DOI] [Google Scholar]
- 3.Chung S.-H., Kuyucak S. Ion Channels: Recent Progress and Prospects. Eur. Biophys. J. 2002;31:283–293. doi: 10.1007/s00249-002-0216-4. [DOI] [PubMed] [Google Scholar]
- 4.McLaughlin S. Electrostatic Potentials at Membrane–Solution Interfaces. Curr. Top. Membr. Transp. 1977;9:71–137. [Google Scholar]
- 5.Pickar A.D., Benz R. Transport of Oppositely Charged Lipophilic Probe Ions in Lipid Bilayer Membranes Having Various Structures. J. Membr. Biol. 1978;44:353–376. [Google Scholar]
- 6.Flewelling R.F., Hubbell W.L. The Membrane Dipole Potential in a Total Membrane Potential Model. Applications to Hydrophobic Ion Interactions with Membranes. Biophys. J. 1986;49:541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Franklin J.C., Cafiso D.S. Internal Electrostatic Potentials in Bilayers: Measuring and Controlling Dipole Potentials in Lipid Vesicles. Biophys. J. 1993;65:289–299. doi: 10.1016/S0006-3495(93)81051-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Rokitskaya T.L., Antonenko Y.N., Kotova E.A. Effect of the Dipole Potential of a Bilayer Lipid Membrane on Gramicidin Channel Dissociation Kinetics. Biophys. J. 1997;73:850–854. doi: 10.1016/S0006-3495(97)78117-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Maggio B. Modulation of Phospholipase A2 by Electrostatic Fields and Dipole Potential of Glycosphingolipids in Monolayers. J. Lipid Res. 1999;40:930–939. [PubMed] [Google Scholar]
- 10.Cladera J., O’Shea P. Intramembrane Molecular Dipoles Affect the Membrane Insertion and Folding of a Model Amphiphilic Peptide. Biophys. J. 1998;74:2434–2442. doi: 10.1016/S0006-3495(98)77951-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Cladera J., Martin I., Ruysschaert J.M., O’Shea P. Characterization of the Sequence of Interactions of the Fusion Domain of the Simian Immunodeficiency Virus with Membranes. Role of the Membrane Dipole Potential. J. Biol. Chem. 1999;274:29951–29959. doi: 10.1074/jbc.274.42.29951. [DOI] [PubMed] [Google Scholar]
- 12.Eisenberg B. Ionic Channels in Biological Membranes – Electrostatic Analysis of a Natural Nanotube. Cont. Phys. 1998;39:447–466. doi: 10.1080/001075198181775. [DOI] [Google Scholar]
- 13.Luchian T., Ho S.S., Bayley H. Kinetics of a Three-Step Reaction Observed at the Single-Molecule Level. Angew. Chem. Int. Ed. 2003;42:1925–1929. doi: 10.1002/anie.200250666. [DOI] [PubMed] [Google Scholar]
- 14.Catterall W.A. Voltage-Dependent Gating of Sodium Channels: Correlating Structure and Function. Trends Neurosci. 1986;9:7–10. doi: 10.1016/0166-2236(86)90004-4. [DOI] [Google Scholar]
- 15.Jiang Y., Lee A., Chen J., Cadene M., Chait B. T., MacKinnon R. The Open Pore Conformation of Potassium Channels. Nature. 2002;417:523–526. doi: 10.1038/417523a. [DOI] [PubMed] [Google Scholar]
- 16.Hille B. Ionic Channels of Excitable Membranes. Sunderland, MA: Sinauer Associates; 1992. [Google Scholar]
- 17.Morais-Cabral J.H., Zhou Y.F., MacKinnon R. Energetic Optimization of Ion Conduction Rate by the K Selectivity Filter. Nature. 2001;414:37–42. doi: 10.1038/35102000. [DOI] [PubMed] [Google Scholar]
- 18.Gouaux J.E., Braha O., Hobaugh M.R., Song L., Cheley S., Shustak C., Bayley H. Subunit Stoichiometry of Staphylococcal A-Hemolysin in Crystals and on Membranes: A heptameric transmembrane pore. Proc. Natl. Acad. Sci. U.S.A. 1994;91:12828–12831. doi: 10.1073/pnas.91.26.12828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Song L., Hobaugh M.R., Shustak C., Cheley S., Bayley H., Gouaux J.E. Structure of Staphyloccal A-Hemolysin, a Heptameric Transmembrane Pore. Science. 1996;274:1859–1866. doi: 10.1126/science.274.5294.1859. [DOI] [PubMed] [Google Scholar]
- 20.Fox R.O., Richards F.M. A Voltage-Gated Ion Channel Model Inferred from the Crystal Structure of Alamethicin at 1.5, A Resolution. Nature. 1982;300:325–330. doi: 10.1038/300325a0. [DOI] [PubMed] [Google Scholar]
- 21.Cafiso D.S. Alamethicin: A peptide Model for Voltage Gating and Protein–Membrane Interactions. Annu. Rev. Biophys. Biomol. Struct. 1994;23:141–165. doi: 10.1146/annurev.bb.23.060194.001041. [DOI] [PubMed] [Google Scholar]
- 22.Eisenberg M., Hall J.E., Mead C.A. The Nature of the Voltage-Dependent Conductance Induced by Alamethicin in Black Lipid Membranes. J. Mem. Biol. 1973;14:143–176. doi: 10.1007/BF01868075. [DOI] [PubMed] [Google Scholar]
- 23.Hall J.E. Voltage-Dependent Lipid Flip-Flop Induced by Alamethicin. Biophys. J. 1981;33:373–382. doi: 10.1016/S0006-3495(81)84901-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Latorre R., Miller C.G., Quay S. Voltage-Dependent Conductance Induced by Alamethicin–Phospholipid Conjugates. Biophys. J. 1981;36:803–809. doi: 10.1016/S0006-3495(81)84767-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Aguilella V.M., Bezrukov S. M. Alamethicin Channel Conductance Modified by Lipid Charge. Eur. Biophys. J. 2001;30:233–241. doi: 10.1007/s002490100145. [DOI] [PubMed] [Google Scholar]
- 26.Duclohier H., Wroblewski H. Voltage-Dependent Pore Formation and Antimicrobial Activity by Alamethicin and Analogues. J. Mem. Biol. 2001;184:1–12. doi: 10.1007/s00232-001-0077-2. [DOI] [PubMed] [Google Scholar]
- 27.Bockmann R.A., Hac A., Heimburg T., Grubmuller H. Effect of Sodium Chloride on a Lipid Bilayer. Biophys. J. 2003;85:1647–1655. doi: 10.1016/S0006-3495(03)74594-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.de la Cascales J.J., Torre J.G. Effect of Lithium and Sodium Ions on a Charged Membrane of Dipalmitoylphosphatidylserine: A Study by Molecular Dynamics Simulation. Biochim. Biophys. Acta. 1997;1330:145–156. doi: 10.1016/s0005-2736(97)00156-9. [DOI] [PubMed] [Google Scholar]
- 29.Clarke R.J., Lupfert C. Influence of Anions and Cations on the Dipole Potential of Phosphatidylcholine Vesicles: A basis for the Hofmeister Effect. Biophys. J. 1999;76:2614–2624. doi: 10.1016/S0006-3495(99)77414-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Akutsu H., Seelig J. Ineraction of Metal-Ions with Phosphatidylcholine Bilyaer-Membranes. Biochem. US. 1981;20:7366–7373. doi: 10.1021/bi00529a007. [DOI] [PubMed] [Google Scholar]
- 31.Binder H., Zschornig O. The Effect of Metal Cations on the Phase Behaviour and Hydration Characteristics of Phospholipid Membranes. Chem. Phys. Lipids. 2002;115:39–61. doi: 10.1016/S0009-3084(02)00005-1. [DOI] [PubMed] [Google Scholar]
- 32.Bockmann R.A., Grubmuller H. Multistep Binding of Divalent Cations to Phospholipid Bilayers: A Molecular Dynamics Study. Angew. Chem. Int. Ed. 2004;43:1021–1021. doi: 10.1002/anie.200352784. [DOI] [PubMed] [Google Scholar]
