Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jan;77(1):132–136. doi: 10.1073/pnas.77.1.132

Structure and function of carboxypeptidase A alpha in supercooled water.

J S Thompson, H Gehring, B L Vallee
PMCID: PMC348222  PMID: 6928608

Abstract

The spectral and enzymatic characteristics of chromophoric derivatives of carboxypeptidase A alpha (EC 3.4.17.1) have been examined at subzero temperatures in supercooled water-in-oil emulsions. Substrate and temperature dependencies of enzyme kinetics indicated the existence of a solution-like enzyme phase that greatly extends the temperature range (greater than 60 degrees C) over which the activity of this enzyme can be measured. The emulsion spectra were virtually identical to those of solutions over a wide range of temperatures. Subzero temperatures (less than -10 degrees C) may induce changes of enzyme conformation but not of geometry at the site of the metal atom, nor do they adversely affect activity at any of the temperatures studied. Both structure and function of carboxypeptidase A alpha can be examined in supercooled water under identical reaction conditions.

Full text

PDF
132

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMESZ J., DUYSENS L. N., BRANDT D. C. Methods for measuring and correcting the absorption spectrum of scattering suspensions. J Theor Biol. 1961 Jan;1:59–74. doi: 10.1016/0022-5193(61)90026-1. [DOI] [PubMed] [Google Scholar]
  2. Auld D. S. Conformational changes in proteins by low temperature--rapid flow analysis. Methods Enzymol. 1979;61:318–335. doi: 10.1016/0076-6879(79)61017-0. [DOI] [PubMed] [Google Scholar]
  3. Auld D. S., Holmquist B. Carboxypeptidase A. Differences in the mechanisms of ester and peptide hydrolysis. Biochemistry. 1974 Oct 8;13(21):4355–4361. doi: 10.1021/bi00718a018. [DOI] [PubMed] [Google Scholar]
  4. Breddam K., Bazzone T. J., Holmquist B., Vallee B. L. Carboxypeptidase of Streptomyces griseus. Implications of its characteristics. Biochemistry. 1979 Apr 17;18(8):1563–1570. doi: 10.1021/bi00575a028. [DOI] [PubMed] [Google Scholar]
  5. Douzou P., Balny C., Franks F. New trends in cryoenzymology: I.-Supercooled aqueous solutions. Biochimie. 1978;60(2):151–158. doi: 10.1016/s0300-9084(78)80748-2. [DOI] [PubMed] [Google Scholar]
  6. Douzou P., Balny C. Protein fractionation at subzero temperatures. Adv Protein Chem. 1978;32:77–189. doi: 10.1016/s0065-3233(08)60575-6. [DOI] [PubMed] [Google Scholar]
  7. Douzou P., Debey P., Franks F. Supercooled water as medium for enzyme reactions at subzero temperatures. Biochim Biophys Acta. 1978 Mar 14;523(1):1–8. doi: 10.1016/0005-2744(78)90002-5. [DOI] [PubMed] [Google Scholar]
  8. Douzou P. Enzymology at subzero temperatures. Adv Enzymol Relat Areas Mol Biol. 1977;45:157–272. doi: 10.1002/9780470122907.ch3. [DOI] [PubMed] [Google Scholar]
  9. Douzou P., Keh E., Balny C. Cryoenzymology in aqueous media: Micellar solubilized water clusters. Proc Natl Acad Sci U S A. 1979 Feb;76(2):681–684. doi: 10.1073/pnas.76.2.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. EIGEN M., HAMMES G. G. ELEMENTARY STEPS IN ENZYME REACTIONS (AS STUDIED BY RELAXATION SPECTROMETRY). Adv Enzymol Relat Areas Mol Biol. 1963;25:1–38. doi: 10.1002/9780470122709.ch1. [DOI] [PubMed] [Google Scholar]
  11. FELBER J. P., COOMBS T. L., VALLEE B. L. The mechanism of inhibition of carboxypeptidase A by 1,10-phenanthroline. Biochemistry. 1962 Mar;1:231–238. doi: 10.1021/bi00908a006. [DOI] [PubMed] [Google Scholar]
  12. Harrison L. W., Auld D. S., Vallee B. L. Intramolecular arsanilazotyrosine-248-Zn complex of carboxypeptidase A: a monitor of catalytic events. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3930–3933. doi: 10.1073/pnas.72.10.3930. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harrison L. W., Auld D. S., Vallee B. L. Intramolecular arsanilazotyrosine-248-Zn complex of carboxypeptidase A: a monitor of multiple conformational states in solution. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4356–4360. doi: 10.1073/pnas.72.11.4356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harrison L. W., Vallee B. L. Kinetics of substrate and product interactions with arsanilazotyrosine-248 carboxypeptidase A. Biochemistry. 1978 Oct 17;17(21):4359–4363. doi: 10.1021/bi00614a001. [DOI] [PubMed] [Google Scholar]
  15. Holmquist B., Vallee B. L. Metal-coordinating substrate analogs as inhibitors of metalloenzymes. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6216–6220. doi: 10.1073/pnas.76.12.6216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johansen J. T., Klyosov A. A., Vallee B. L. Circular dichroism-inhibitor titrations of arsanilazotyrosine-248 carboxypeptidase A. Biochemistry. 1976 Jan 27;15(2):296–303. doi: 10.1021/bi00647a009. [DOI] [PubMed] [Google Scholar]
  17. Johansen J. T., Vallee B. L. Conformations of arsanilazotyrosine-248 carboxypeptidase A alpha, beta, gamma, comparison of crystals and solution. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2006–2010. doi: 10.1073/pnas.70.7.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johansen J. T., Vallee B. L. Differences between the conformation of arsanilazotyrosine 248 of carboxypeptidase A in the crystalline state and in solution. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2532–2535. doi: 10.1073/pnas.68.10.2532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johansen J. T., Vallee B. L. Environment and conformation dependent sensitivity of the arsanilazotyrosine-248 carboxypeptidase A chromophore. Biochemistry. 1975 Feb 25;14(4):649–660. doi: 10.1021/bi00675a001. [DOI] [PubMed] [Google Scholar]
  20. LATIMER P., EUBANKS C. A. Absorption spectrophotometry of turbid suspensions: a method of correcting for large systematic distortions. Arch Biochem Biophys. 1962 Aug;98:274–285. doi: 10.1016/0003-9861(62)90184-4. [DOI] [PubMed] [Google Scholar]
  21. LATIMER P., RABINOWITCH E. Selective scattering of light by pigments in vivo. Arch Biochem Biophys. 1959 Oct;84:428–441. doi: 10.1016/0003-9861(59)90605-8. [DOI] [PubMed] [Google Scholar]
  22. Latimer P. Apparent Shifts of Absorption Bands of Cell Suspensions and Selective Light Scattering. Science. 1958 Jan 3;127(3288):29–30. doi: 10.1126/science.127.3288.29. [DOI] [PubMed] [Google Scholar]
  23. Makinen M. W., Kuo L. C., Dymowski J. J., Jaffer S. Catalytic role of the metal ion of carboxypeptidase A in ester hydrolysis. J Biol Chem. 1979 Jan 25;254(2):356–366. [PubMed] [Google Scholar]
  24. Misiorowski R. L., Wells M. A. The activity of phospholipase A2 in reversed micelles of phosphatidylcholine in diethyl ether: effect of water and cations. Biochemistry. 1974 Nov 19;13(24):4921–4927. doi: 10.1021/bi00721a007. [DOI] [PubMed] [Google Scholar]
  25. Poon P. H., Wells M. A. Physical studies on egg phosphatidylcholine in diethyl ether- water solutions. Biochemistry. 1974 Nov 19;13(24):4928–4936. doi: 10.1021/bi00721a008. [DOI] [PubMed] [Google Scholar]
  26. Rasmussen D. H., Macaulay M. N., MacKenzie A. P. Supercooling and nucleation of ice in single cells. Cryobiology. 1975 Aug;12(4):328–339. doi: 10.1016/0011-2240(75)90006-1. [DOI] [PubMed] [Google Scholar]
  27. Wells M. A. The nature of water inside phosphatidylcholine micelles in diethyl ether. Biochemistry. 1974 Nov 19;13(24):4937–4942. doi: 10.1021/bi00721a009. [DOI] [PubMed] [Google Scholar]
  28. Williams H. E., Freeman M. Milk inhalation pneumonia: the significance of fat filled macrophages in tracheal secretions. Aust Paediatr J. 1973 Dec;9(6):286–288. doi: 10.1111/j.1440-1754.1973.tb02237.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES