Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jan;77(1):137–141. doi: 10.1073/pnas.77.1.137

Serum stimulation of phospholipase A2 and prostaglandin release in 3T3 cells is associated with platelet-derived growth-promoting activity.

W T Shier
PMCID: PMC348223  PMID: 6928609

Abstract

Sera from mouse, rat, and calf sources stimulate cellular phospholipase A2 activity (PLase; phosphatide 2-acylhydrolase, EC 3.1.1.4) and prostaglandin synthesis in 3T3 Swiss mouse fibroblasts, releasing up to 33% of biosynthetically incorporated [3H]arachidonic acid as hydrolysis products in 1 hr. The PLase stimulated by mouse serum exhibits specificity for arachidonic acid residues on phospholipids. It is stimulated 2.5-fold by 1.8 mM Ca2+ in the presence of 5 microM divalent cation ionophore A23187, consistent with a Ca2+-dependent enzyme possessing a cytoplasmic Ca2+ binding site. The percentage maximal PLase- and growth-stimulating activities of the three sera exhibit similar concentration dependencies, with the homologous (mouse) serum exhibiting the highest specific activities. Confluent 3T3 cells deplete PLase-stimulating activity from medium containing calf serum at a rate similar to the depletion of cell growth-stimulus activity. The PLase-stimulating activity in rat and mouse sera is derived from the leukocyte fraction of blood, presumably from platelets. In rat leukocyte lysates the PLase-stimulating activity exhibits properties similar to those reported for platelet-derived cell growth factors from rat and human sources--i.e., stability to exposure to 100 degrees C for 2 min or to pH 2 or pH 11, and cationic properties. Purified preparations of human platelet-derived growth factor also exhibit 3T3 PLase-stimulating activity.

Full text

PDF
137

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoniades H. N., Scher C. D. Radioimmunoassay of a human serum growth factor for Balb/c-3T3 cells: derivation from platelets. Proc Natl Acad Sci U S A. 1977 May;74(5):1973–1977. doi: 10.1073/pnas.74.5.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antoniades H. N., Scher C. D., Stiles C. D. Purification of human platelet-derived growth factor. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1809–1813. doi: 10.1073/pnas.76.4.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartholomew J. C., Yokota H., Ross P. Effect of serum on the growth of Balb oT3 A31 mouse fibroblasts and an SV40-transformed derivative. J Cell Physiol. 1976 Jul;88(3):277–286. doi: 10.1002/jcp.1040880303. [DOI] [PubMed] [Google Scholar]
  4. Borle A. B. Kinetic analyses of calcium movements in HeLa cell cultures. I. Calcium influx. J Gen Physiol. 1969 Jan;53(1):43–56. doi: 10.1085/jgp.53.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  6. Gospodarowicz D., Moran J. S. Growth factors in mammalian cell culture. Annu Rev Biochem. 1976;45:531–558. doi: 10.1146/annurev.bi.45.070176.002531. [DOI] [PubMed] [Google Scholar]
  7. Gould-Somero M., Hardy R., Holland L. The Y chromosome and sperm length in D. melanogaster. Exp Cell Res. 1974 Aug;87(2):397–398. doi: 10.1016/0014-4827(74)90500-x. [DOI] [PubMed] [Google Scholar]
  8. Hershko A., Mamont P., Shields R., Tomkins G. M. "Pleiotypic response". Nat New Biol. 1971 Aug;232(33):206–211. [PubMed] [Google Scholar]
  9. Holley R. W., Kiernan J. A. "Contact inhibition" of cell division in 3T3 cells. Proc Natl Acad Sci U S A. 1968 May;60(1):300–304. doi: 10.1073/pnas.60.1.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hong S. L., Levine L. Inhibition of arachidonic acid release from cells as the biochemical action of anti-inflammatory corticosteroids. Proc Natl Acad Sci U S A. 1976 May;73(5):1730–1734. doi: 10.1073/pnas.73.5.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levine L., Hassid A. Epidermal growth factor stimulates prostaglandin biosynthesis by canine kidney (MDCK) cells. Biochem Biophys Res Commun. 1977 Jun 20;76(4):1181–1187. doi: 10.1016/0006-291x(77)90980-9. [DOI] [PubMed] [Google Scholar]
  12. Ohuchi K., Levine L. Tumor promoting phorbol diesters stimulate release of radioactivity from [3H]-arachidonic acid labeled- but not [14C]linoleic acid labeled-cells. Indomethacin inhibits the stimulated release from [3H] arachidonate labeled cells. Prostaglandins Med. 1978 Dec;1(6):421–431. doi: 10.1016/0161-4630(78)90113-1. [DOI] [PubMed] [Google Scholar]
  13. Pardee A. B. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1286–1290. doi: 10.1073/pnas.71.4.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pardee A. B., Dubrow R., Hamlin J. L., Kletzien R. F. Animal cell cycle. Annu Rev Biochem. 1978;47:715–750. doi: 10.1146/annurev.bi.47.070178.003435. [DOI] [PubMed] [Google Scholar]
  15. Pledger W. J., Stiles C. D., Antoniades H. N., Scher C. D. Induction of DNA synthesis in BALB/c 3T3 cells by serum components: reevaluation of the commitment process. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4481–4485. doi: 10.1073/pnas.74.10.4481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ross R., Glomset J., Kariya B., Harker L. A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1207–1210. doi: 10.1073/pnas.71.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shier W. T. Activation of high levels of endogenous phospholipase A2 in cultured cells. Proc Natl Acad Sci U S A. 1979 Jan;76(1):195–199. doi: 10.1073/pnas.76.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shier W. T., Baldwin J. H., Nilsen-Hamilton M., Hamilton R. T., Thanassi N. M. Regulation of guanylate and adenylate cyclase activities by lysolecithin. Proc Natl Acad Sci U S A. 1976 May;73(5):1586–1590. doi: 10.1073/pnas.73.5.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shier W. T. Inhibition of acyl coenzyme A:lysolecithin acyltransferases by local anesthetics, detergents and inhibitors of cyclic nucleotide phosphodiesterases. Biochem Biophys Res Commun. 1977 Mar 7;75(1):186–193. doi: 10.1016/0006-291x(77)91307-9. [DOI] [PubMed] [Google Scholar]
  20. Shier W. T. Inhibition of acyl coenzyme A:lysolecithin acyltransferases by local anesthetics, detergents and inhibitors of cyclic nucleotide phosphodiesterases. Biochem Biophys Res Commun. 1977 Mar 7;75(1):186–193. doi: 10.1016/0006-291x(77)91307-9. [DOI] [PubMed] [Google Scholar]
  21. Shier W. T. Inhibition of prostaglandin synthesis by lysolecithin. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1168–1174. doi: 10.1016/0006-291x(77)91416-4. [DOI] [PubMed] [Google Scholar]
  22. Stiles C. D., Capone G. T., Scher C. D., Antoniades H. N., Van Wyk J. J., Pledger W. J. Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1279–1283. doi: 10.1073/pnas.76.3.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vogel A., Raines E., Kariya B., Rivest M. J., Ross R. Coordinate control of 3T3 cell proliferation by platelet-derived growth factor and plasma components. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2810–2814. doi: 10.1073/pnas.75.6.2810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Waite M., Scherphof G. L., Boshouwers F. M., van Deenen L. L. Differentiation of phospholipases A in mitochondria and lysosomes of rat liver. J Lipid Res. 1969 Jul;10(4):411–420. [PubMed] [Google Scholar]
  25. van den Bosch H. Phosphoglyceride metabolism. Annu Rev Biochem. 1974;43(0):243–277. doi: 10.1146/annurev.bi.43.070174.001331. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES