Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jan;77(1):338–342. doi: 10.1073/pnas.77.1.338

Orthorhombic two-dimensional crystal form of purple membrane.

H Michel, D Oesterhelt, R Henderson
PMCID: PMC348265  PMID: 6928627

Abstract

A new two-dimensional crystal form of purple membrane has been obtained in vitro. It is produced by the joint use of a cationic detergent, dodecyltrimethylammonium chloride, and the nonionic detergent, Triton X-100. It primarily forms large, rolled-up sheets that look like needles in the light microscope. Liposomes and tubes are also observed. The absorption maximum of the new form of purple membrane is blue-shifted by 6 nm and its density is slightly lower than the natural form of purple membrane. The new form of purple membrane is orthorhombic with space group p22121 and cell dimensions 57.6 x 73.5 A. Four molecules of bacteriorhodopsin occupy the unit cell with an area per molecule close to that found in the native p3 structure. The projected structure to 6.5-A resolution was determined by electron microscopy and diffraction. It shows an identical molecular structure to that of the p3 form and determines the position of the polypeptide boundary.

Full text

PDF
338

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaurock A. E. Bacteriorhodospin: a trans-membrane pump containing alpha-helix. J Mol Biol. 1975 Apr 5;93(2):139–158. doi: 10.1016/0022-2836(75)90124-2. [DOI] [PubMed] [Google Scholar]
  2. Blaurock A. E., Stoeckenius W. Structure of the purple membrane. Nat New Biol. 1971 Sep 29;233(39):152–155. doi: 10.1038/newbio233152a0. [DOI] [PubMed] [Google Scholar]
  3. Cherry R. J., Müller U. Temperature-dependent aggregation of bacteriorhodopsin in dipalmitoyl- and dimyristoylphosphatidylcholine vesicles. J Mol Biol. 1978 May 15;121(2):283–298. doi: 10.1016/s0022-2836(78)80010-2. [DOI] [PubMed] [Google Scholar]
  4. Happe M., Overath P. Bacteriorhodopsin depleted of purple membrane lipids. Biochem Biophys Res Commun. 1976 Oct 18;72(4):1504–1511. doi: 10.1016/s0006-291x(76)80184-2. [DOI] [PubMed] [Google Scholar]
  5. Henderson R. The structure of the purple membrane from Halobacterium hallobium: analysis of the X-ray diffraction pattern. J Mol Biol. 1975 Apr 5;93(2):123–138. doi: 10.1016/0022-2836(75)90123-0. [DOI] [PubMed] [Google Scholar]
  6. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  7. Kates M. The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria. Prog Chem Fats Other Lipids. 1978;15(4):301–342. doi: 10.1016/0079-6832(77)90011-8. [DOI] [PubMed] [Google Scholar]
  8. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  9. Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971 Sep 29;233(39):149–152. doi: 10.1038/newbio233149a0. [DOI] [PubMed] [Google Scholar]
  10. Reyenolds J. A., Stoeckenius W. Molecular weight of bacteriorhodopsin solubilized in Triton X-100. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2803–2804. doi: 10.1073/pnas.74.7.2803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Unwin P. N., Henderson R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol. 1975 May 25;94(3):425–440. doi: 10.1016/0022-2836(75)90212-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES