Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jan;77(1):442–446. doi: 10.1073/pnas.77.1.442

Fusion of liposomes with mitochondrial inner membranes

Heinz Schneider 1, John J Lemasters 1, Matthias Höchli 1, Charles R Hackenbrock 1
PMCID: PMC348287  PMID: 6928637

Abstract

A procedure is outlined for the fusion of mixed phospholipid liposomes (small unilamellar vesicles) with the mitochondrial inner membrane, which enriches the membrane lipid bilayer 30-700% in a controlled fashion. Fusion was initiated by manipulation of the pH of a mixture of freshly sonicated liposomes and the functional inner membrane/matrix fraction of rat liver mitochondria. During the pH fusion procedure, liposomes became closely apposed with and sequestered by the inner membranes as revealed by freeze-fracture electron microscopy. After the pH fusion procedure, a number of ultrastructural, compositional, and functional characteristics were found to be proportionally related: the membrane surface area increased; the lateral density distribution of intramembrane particles (integral proteins) in the plane of the membrane decreased whereas the particles remained random; the membrane became more buoyant; the ratio of membrane lipid phosphorus to total membrane protein increased; the ratio of membrane lipid phosphorus to heme a of cytochrome c oxidase increased; and the rate of electron transfer between some interacting membrane oxidoreduction proteins decreased. These data reveal that liposomal phospholipid was incorporated into the membrane bilayer (not simply adsorbed to the membrane surface) and that integral membrane proteins diffused freely into the laterally expanding bilayer. Furthermore, the data suggest that the rate of electron transfer may be limited by the rate of lateral diffusion of oxidoreduction components in the bilayer of the mitochondrial inner membrane.

Keywords: membrane phospholipid enrichment, protein diffusion, electron transfer

Full text

PDF
442

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Gregoriadis G., Ryman B. E. Lysosomal localization of -fructofuranosidase-containing liposomes injected into rats. Biochem J. 1972 Aug;129(1):123–133. doi: 10.1042/bj1290123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hackenbrock C. R. Energy-linked ultrastructural transformations in isolated liver mitochondria and mitoplasts. Preservation of configurations by freeze-cleaving compared to chemical fixation. J Cell Biol. 1972 May;53(2):450–465. doi: 10.1083/jcb.53.2.450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Höchli M., Hackenbrock C. R. Fluidity in mitochondrial membranes: thermotropic lateral translational motion of intramembrane particles. Proc Natl Acad Sci U S A. 1976 May;73(5):1636–1640. doi: 10.1073/pnas.73.5.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Höchli M., Hackenbrock C. R. Lateral translational diffusion of cytochrome c oxidase in the mitochondrial energy-transducing membrane. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1236–1240. doi: 10.1073/pnas.76.3.1236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Moor H. Freeze-etching. Int Rev Cytol. 1969;25:391–412. doi: 10.1016/s0074-7696(08)60209-0. [DOI] [PubMed] [Google Scholar]
  8. Pagano R. E., Weinstein J. N. Interactions of liposomes with mammalian cells. Annu Rev Biophys Bioeng. 1978;7:435–468. doi: 10.1146/annurev.bb.07.060178.002251. [DOI] [PubMed] [Google Scholar]
  9. Poste G., Papahadjopoulos D. The influence of vesicle membrane properties on the interaction of lipid vesicles with cultured cells. Ann N Y Acad Sci. 1978;308:164–184. doi: 10.1111/j.1749-6632.1978.tb22021.x. [DOI] [PubMed] [Google Scholar]
  10. Schnaitman C., Greenawalt J. W. Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J Cell Biol. 1968 Jul;38(1):158–175. doi: 10.1083/jcb.38.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Sheetz M. P., Chan S. I. Effect of sonication on the structure of lecithin bilayers. Biochemistry. 1972 Nov 21;11(24):4573–4581. doi: 10.1021/bi00774a024. [DOI] [PubMed] [Google Scholar]
  12. Tyrrell D. A., Heath T. D., Colley C. M., Ryman B. E. New aspects of liposomes. Biochim Biophys Acta. 1976 Dec 14;457(3-4):259–302. doi: 10.1016/0304-4157(76)90002-2. [DOI] [PubMed] [Google Scholar]
  13. Vanneste W. H. Molecular proportion of the fixed cytochrome components of the respiratory chain of Keilin-Hartree particles and beef heart mitochondria. Biochim Biophys Acta. 1966 Jan 11;113(1):175–178. doi: 10.1016/s0926-6593(66)80132-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES