Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jan;77(1):457–461. doi: 10.1073/pnas.77.1.457

Growth and differentiation of embryonal carcinoma cell line F9 in defined media.

A Rizzino, C Crowley
PMCID: PMC348290  PMID: 6244561

Abstract

This paper reports the growth and differentiation of the mouse embryonal carcinoma cell line F9 in completely defined culture media. The defined growth medium, referred to as EM-3, contains plasma fibronectin, insulin, and transferrin in place of serum. F9 cells cultured in EM-3 for over 15 generations retain their ability to form tumors and to differentiate. Fibronectin is essential for the attachment of F9 cells in defined media and its effect can be blocked with affinity-purified anti-fibronectin. When retinoic acid was added to EM-3, the F9 cells differentiated. The majority of the the newly formed cells differed from patient F9 cell two major respects: (i) they were morphologically different; and (ii) they secreted plasminogen activator, and the secretion was stimulated by dibutyrlyl adenosine cyclic monophosphate.

Full text

PDF
457

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beers W. H., Strickland S., Reich E. Ovarian plasminogen activator: relationship to ovulation and hormonal regulation. Cell. 1975 Nov;6(3):387–394. doi: 10.1016/0092-8674(75)90188-9. [DOI] [PubMed] [Google Scholar]
  2. Brinster R. L. The effect of cells transferred into the mouse blastocyst on subsequent development. J Exp Med. 1974 Oct 1;140(4):1049–1056. doi: 10.1084/jem.140.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Grinnell F., Hays D. G. Cell adhesion and spreading factor. Similarity to cold insoluble globulin in human serum. Exp Cell Res. 1978 Aug;115(1):221–229. doi: 10.1016/0014-4827(78)90419-6. [DOI] [PubMed] [Google Scholar]
  4. Hayashi I., Larner J., Sato G. Hormonal growth control of cells in culture. In Vitro. 1978 Jan;14(1):23–30. doi: 10.1007/BF02618171. [DOI] [PubMed] [Google Scholar]
  5. Hök M., Rubin K., Oldberg A., Obrink B., Vaheri A. Cold-insoluble globulin mediates the adhesion of rat liver cells to plastic Petri dishes. Biochem Biophys Res Commun. 1977 Dec 7;79(3):726–733. doi: 10.1016/0006-291x(77)91172-x. [DOI] [PubMed] [Google Scholar]
  6. Lehman J. M., Speers W. C., Swartzendruber D. E., Pierce G. B. Neoplastic differentiation: characteristics of cell lines derived from a murine teratocarcinoma. J Cell Physiol. 1974 Aug;84(1):13–27. doi: 10.1002/jcp.1040840103. [DOI] [PubMed] [Google Scholar]
  7. Martin G. R., Wiley L. M., Damjanov I. The development of cystic embryoid bodies in vitro from clonal teratocarcinoma stem cells. Dev Biol. 1977 Dec;61(2):230–244. doi: 10.1016/0012-1606(77)90294-9. [DOI] [PubMed] [Google Scholar]
  8. McBurney M. W. Clonal lines of teratocarcinoma cells in vitro: differentiation and cytogenetic characteristics. J Cell Physiol. 1976 Nov;89(3):441–455. doi: 10.1002/jcp.1040890310. [DOI] [PubMed] [Google Scholar]
  9. Mintz B., Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3585–3589. doi: 10.1073/pnas.72.9.3585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mosesson M. W., Umfleet R. A. The cold-insoluble globulin of human plasma. I. Purification, primary characterization, and relationship to fibrinogen and other cold-insoluble fraction components. J Biol Chem. 1970 Nov 10;245(21):5728–5736. [PubMed] [Google Scholar]
  11. Orly J., Sato G. Fibronectin mediates cytokinesis and growth of rat follicular cells in serum-free medium. Cell. 1979 Jun;17(2):295–305. doi: 10.1016/0092-8674(79)90155-7. [DOI] [PubMed] [Google Scholar]
  12. PIERCE G. B., Jr, VERNEY E. L. An in vitro and in vivo study of differentiation in teratocarcinomas. Cancer. 1961 Sep-Oct;14:1017–1029. doi: 10.1002/1097-0142(196109/10)14:5<1017::aid-cncr2820140516>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  13. Papaioannou V. E., Gardner R. L., McBurney M. W., Babinet C., Evans M. J. Participation of cultured teratocarcinoma cells in mouse embryogenesis. J Embryol Exp Morphol. 1978 Apr;44:93–104. [PubMed] [Google Scholar]
  14. Papaioannou V. E., McBurney M. W., Gardner R. L., Evans M. J. Fate of teratocarcinoma cells injected into early mouse embryos. Nature. 1975 Nov 6;258(5530):70–73. doi: 10.1038/258070a0. [DOI] [PubMed] [Google Scholar]
  15. Pearlstein E. Plasma membrane glycoprotein which mediates adhesion of fibroblasts to collagen. Nature. 1976 Aug 5;262(5568):497–500. doi: 10.1038/262497a0. [DOI] [PubMed] [Google Scholar]
  16. Pena S. D., Hughes R. C. Fibronectin-plasma membrane interactions in the adhesion and spreading of hamster fibroblasts. Nature. 1978 Nov 2;276(5683):80–83. doi: 10.1038/276080a0. [DOI] [PubMed] [Google Scholar]
  17. Rizzino A., Sato G. Growth of embryonal carcinoma cells in serum-free medium. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1844–1848. doi: 10.1073/pnas.75.4.1844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rizzino A., Sherman M. I. Development and differentiation of mouse blastocysts in serum-free medium. Exp Cell Res. 1979 Jul;121(2):221–233. doi: 10.1016/0014-4827(79)90001-6. [DOI] [PubMed] [Google Scholar]
  19. Sens D., Natter W., James E. Evolutionary drift of the argF and argl genes. Coding for isoenzyme forms of ornithine transcarbamylase in E. coli K12. Cell. 1977 Feb;10(2):275–285. doi: 10.1016/0092-8674(77)90221-5. [DOI] [PubMed] [Google Scholar]
  20. Sherman M. I. Long term culture of cells derived from mouse blastocysts. Differentiation. 1975 Aug 11;3(1-3):51–67. doi: 10.1111/j.1432-0436.1975.tb00845.x. [DOI] [PubMed] [Google Scholar]
  21. Smith J. E., Milch P. O., Muto Y., Goodman D. S. The plasma transport and metabolism of retinoic acid in the rat. Biochem J. 1973 Apr;132(4):821–827. doi: 10.1042/bj1320821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Strickland S., Mahdavi V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell. 1978 Oct;15(2):393–403. doi: 10.1016/0092-8674(78)90008-9. [DOI] [PubMed] [Google Scholar]
  23. Strickland S., Reich E., Sherman M. I. Plasminogen activator in early embryogenesis: enzyme production by trophoblast and parietal endoderm. Cell. 1976 Oct;9(2):231–240. doi: 10.1016/0092-8674(76)90114-8. [DOI] [PubMed] [Google Scholar]
  24. Vogt A., Mishell R. I., Dutton R. W. Stimulation of DNA synthesis in cultures of mouse spleen cell suspensions by bovine transferrin. Exp Cell Res. 1969 Feb;54(2):195–200. doi: 10.1016/0014-4827(69)90232-8. [DOI] [PubMed] [Google Scholar]
  25. Wartiovaara J., Leivo I., Vaheri A. Expression of the cell surface-associated glycoprotein, fibronectin, in the early mouse embryo. Dev Biol. 1979 Mar;69(1):247–257. doi: 10.1016/0012-1606(79)90289-6. [DOI] [PubMed] [Google Scholar]
  26. Wartiovaara J., Leivo I., Virtanen I., Vaheri A., Graham C. F. Appearance of fibronectin during differentiation of mouse teratocarcinoma in vitro. Nature. 1978 Mar 23;272(5651):355–356. doi: 10.1038/272355a0. [DOI] [PubMed] [Google Scholar]
  27. Welborn T. A., Rubenstein A. H., Haslam R., Fraser R. Normal insulin response to glucose. Lancet. 1966 Feb 5;1(7432):280–283. doi: 10.1016/s0140-6736(66)90637-4. [DOI] [PubMed] [Google Scholar]
  28. Wolfe J., Mautner V., Hogan B., Tilly R. Synthesis and retention of fibronectin (LETS protein) by mouse teratocarcinoma cells. Exp Cell Res. 1979 Jan;118(1):63–71. doi: 10.1016/0014-4827(79)90584-6. [DOI] [PubMed] [Google Scholar]
  29. Yamada K. M., Kennedy D. W. Fibroblast cellular and plasma fibronectins are similar but not identical. J Cell Biol. 1979 Feb;80(2):492–498. doi: 10.1083/jcb.80.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Yamada K. M., Olden K. Fibronectins--adhesive glycoproteins of cell surface and blood. Nature. 1978 Sep 21;275(5677):179–184. doi: 10.1038/275179a0. [DOI] [PubMed] [Google Scholar]
  31. Yamada K. M., Yamada S. S., Pastan I. The major cell surface glycoprotein of chick embryo fibroblasts is an agglutinin. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3158–3162. doi: 10.1073/pnas.72.8.3158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zetter B. R., Martin G. R. Expression of a high molecular weight cell surface glycoprotein (LETS protein) by preimplantation mouse embryos and teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1978 May;75(5):2324–2328. doi: 10.1073/pnas.75.5.2324. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES