Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jan;77(1):490–493. doi: 10.1073/pnas.77.1.490

Lentropin: a factor in vitreous humor which promotes lens fiber cell differentiation.

D C Beebe, D E Feagans, H A Jebens
PMCID: PMC348297  PMID: 6928641

Abstract

An activity has been identified in chicken vitreous humor which stimulates embryonic chicken lens epithelial cells to elongate and specialize for lens crystallin synthesis. The activity is heat-labile and is destroyed by treatment with trypsin or agents that reduce disulfides. Gel filtration and ultrafiltration analyses indicate that it has an apparent molecular weight of approximately 60,000. Its properties differ from those of an activity present in serum which also can promote lens fiber cell formation in vitro. We call this material "lentropin" and suggest that it is responsible for stimulating lens fiber cell formation in vivo and, consequently, plays an important role in determining the shape and polarity of the lens.

Full text

PDF
490

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arruti C., Courtois Y. Morphological changes and growth stimulation of bovine epithelial lens cells by a retinal extract in vitro. Exp Cell Res. 1978 Dec;117(2):283–292. doi: 10.1016/0014-4827(78)90142-8. [DOI] [PubMed] [Google Scholar]
  2. Balazs E. A., Toth L. Z., Jutheden G. M., Collins B. A. Cytological and biochemical studies on the developing chicken vitreous. Exp Eye Res. 1965 Sep;4(3):237–248. doi: 10.1016/s0014-4835(65)80037-9. [DOI] [PubMed] [Google Scholar]
  3. Beebe D. C., Feagans D. E., Blanchette-Mackie E. J., Nau M. E. Lens epithelial cell elongation in the absence of microtubules: evidence for a new effect of colchicine. Science. 1979 Nov 16;206(4420):836–838. doi: 10.1126/science.493982. [DOI] [PubMed] [Google Scholar]
  4. Beebe D. C., Piatigorsky J. The control of delta-crystallin gene expression during lens cell development: dissociation of cell elongation, cell division, delta-crystallin synthesis, and delta-crystallin mRNA accumulation. Dev Biol. 1977 Sep;59(2):174–182. doi: 10.1016/0012-1606(77)90252-4. [DOI] [PubMed] [Google Scholar]
  5. COOPER W. C., HALBERT S. P., MANSKI W. J. IMMUNOCHEMICAL ANALYSIS OF VITREOUS AND SUBRETINAL FLUID. Invest Ophthalmol. 1963 Aug;2:369–377. [PubMed] [Google Scholar]
  6. COULOMBRE J. L., COULOMBRE A. J. LENS DEVELOPMENT: FIBER ELONGATION AND LENS ORIENTATION. Science. 1963 Dec 13;142(3598):1489–1490. doi: 10.1126/science.142.3598.1489. [DOI] [PubMed] [Google Scholar]
  7. Coulombre J. L., Coulombre A. J. Lens development. IV. Size, shape, and orientation. Invest Ophthalmol. 1969 Jun;8(3):251–257. [PubMed] [Google Scholar]
  8. FAYET M. T. [Immunoelectrophoresis of the vitreous humor]. Bull Soc Chim Biol (Paris) 1959;41:1189–1196. [PubMed] [Google Scholar]
  9. HAM R. G. An improved nutrient solution for diploid Chinese hamster and human cell lines. Exp Cell Res. 1963 Feb;29:515–526. doi: 10.1016/s0014-4827(63)80014-2. [DOI] [PubMed] [Google Scholar]
  10. LAURENT U. B., LAURENT T. C., HOWE A. F. Chromatography of soluble proteins from the bovine vitreous body on DEAE-cellulose. Exp Eye Res. 1962 Mar;1:276–285. doi: 10.1016/s0014-4835(62)80011-6. [DOI] [PubMed] [Google Scholar]
  11. Milstone L. M., Piatigorsky J. Rates of protein synthesis in explanted embryonic chick lens epithelia: differential stimulation of delta-crystallin synthesis. Dev Biol. 1975 Mar;43(1):91–100. doi: 10.1016/0012-1606(75)90133-5. [DOI] [PubMed] [Google Scholar]
  12. Milstone L. M., Piatigorsky J. delta-Crystallin gene expression in embryonic chick lens epithelia cultured in the presence of insulin. Exp Cell Res. 1977 Mar 1;105(1):9–14. doi: 10.1016/0014-4827(77)90147-1. [DOI] [PubMed] [Google Scholar]
  13. Neal M. W., Florini J. R. A rapid method for desalting small volumes of solution. Anal Biochem. 1973 Sep;55(1):328–330. doi: 10.1016/0003-2697(73)90325-4. [DOI] [PubMed] [Google Scholar]
  14. PHILPOTT G. W., COULOMBRE A. J. LENS DEVELOPMENT. II. THE DIFFERENTIATION OF EMBRYONIC CHICK LENS EPITHELIAL CELLS IN VITRO AND IN VIVO. Exp Cell Res. 1965 Jun;38:635–644. doi: 10.1016/0014-4827(65)90387-3. [DOI] [PubMed] [Google Scholar]
  15. Philpott G. W., Coulombre A. J. Cytodifferentiation of precultured embryonic chick lens epithelial cells in vitro and in vivo. Exp Cell Res. 1968 Sep;52(1):140–146. doi: 10.1016/0014-4827(68)90553-3. [DOI] [PubMed] [Google Scholar]
  16. Philpott G. W. Growth and cytodifferentiation of embryonic chick lens epithelial cells in vitro. Exp Cell Res. 1970 Jan;59(1):57–68. doi: 10.1016/0014-4827(70)90623-3. [DOI] [PubMed] [Google Scholar]
  17. Piatigorsky J. Insulin initiation of lens fiber differentiation in culture: elongation of embryonic lens epithelial cells. Dev Biol. 1973 Jan;30(1):214–216. doi: 10.1016/0012-1606(73)90060-2. [DOI] [PubMed] [Google Scholar]
  18. Piatigorsky J., Rothschild S. S., Milstone L. M. Differentiation of lens fibers in explanted embryonic chick lens epithelia. Dev Biol. 1973 Oct;34(2):334–345. doi: 10.1016/0012-1606(73)90362-x. [DOI] [PubMed] [Google Scholar]
  19. Piatigorsky J., Webster H. D., Craig S. P. Protein synthesis and ultrastructure during the formation of embryonic chick lens fibers in vivo and in vitro. Dev Biol. 1972 Feb;27(2):176–189. doi: 10.1016/0012-1606(72)90096-6. [DOI] [PubMed] [Google Scholar]
  20. Piatigorsky J., Webster H. de F., Wollberg M. Cell elongation in the cultured embryonic chick lens epithelium with and without protein synthesis. Involvement of microtubules. J Cell Biol. 1972 Oct;55(1):82–92. doi: 10.1083/jcb.55.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES