Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Jan;77(1):600–603. doi: 10.1073/pnas.77.1.600

Enhanced drug-metabolizing capacity within liver adjacent to human and rat liver tumors.

L G Sultatos, E S Vesell
PMCID: PMC348322  PMID: 6244568

Abstract

Cytochrome P-450 content (nmol/g of liver) differed within regions of rat liver according to proximity to intrahepatically implanted Morris hepatoma 7795 or 5123D. Liver adjacent to tumor had higher microsomal cytochrome P-450 content, decreased DNA content (mg/g of liver), and unaltered cytochrome c reductase activity compared to histologically indistinguishable liver far-removed from the tumor. Liver either adjacent to or far-removed from tumor contained markedly more cytochrome P-450 and higher cytochrome c reductase activity but less DNA than transplanted Morris hepatomas 7795 and 5123D that were grown intrahepatically. Compared to intramuscular implants of these same tumors, intrahepatically implanted Morris hepatomas 7795 and 5123D had increased cytochrome P-450 content. Tumor-containing liver from two human subjects revealed regional changes in cytochrome P-450-mediated monooxygenases similar to those observed in rats. These results suggest that histomorphically nontumorous mammalian liver directly adjacent to intrahepatic tumors exhibits previously unsuspected biochemical alterations.

Full text

PDF
600

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfert M., Geschwind I. I. A Selective Staining Method for the Basic Proteins of Cell Nuclei. Proc Natl Acad Sci U S A. 1953 Oct;39(10):991–999. doi: 10.1073/pnas.39.10.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fenselau C. Review of the metabolism and mode of action of cyclophosphamide. J Assoc Off Anal Chem. 1976 Sep;59(5):1028–1036. [PubMed] [Google Scholar]
  4. Hickie R. A., Kalant H. Modification of hexobarbital metabolism by Morris hepatoma 5123tc. Can J Physiol Pharmacol. 1967 Nov;45(6):975–983. doi: 10.1139/y67-115. [DOI] [PubMed] [Google Scholar]
  5. Kato R., Takanaka A., Takahashi A., Onoda K. Drug metabolism in tumor-bearing rats. I. Activities of NADPH-linked electron transport and drug-metabolizing enzyme systems in liver microsomes of tumor-bearing rats. Jpn J Pharmacol. 1968 Jun;18(2):224–244. [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Miyake Y., Gaylor J. L., Morris H. P. Abnormal microsomal cytochromes and electron transport in Morris hepatomas. J Biol Chem. 1974 Mar 25;249(6):1980–1987. [PubMed] [Google Scholar]
  8. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. II. SOLUBILIZATION, PURIFICATION, AND PROPERTIES. J Biol Chem. 1964 Jul;239:2379–2385. [PubMed] [Google Scholar]
  9. Rogers L. A., Morris H. P., Fouts J. R. The effect of phenobarbital on drug metabolic enzyme activity, ultrastructure and growth of a "minimal deviation" hepatoma (Morris 7800). J Pharmacol Exp Ther. 1967 Jul;157(1):227–244. [PubMed] [Google Scholar]
  10. Sultatos L. G., Vesell E. S., Hepner G. W. Aminopyrine disposition: a sensitive index of acetaminophen-induced hepatocellular damage. Toxicol Appl Pharmacol. 1978 Jul;45(1):177–189. doi: 10.1016/0041-008x(78)90038-8. [DOI] [PubMed] [Google Scholar]
  11. Sultatos L. G., Vesell E. S., Hepner G. W. Heterogeneous response of hepatic mixed function oxidases to chronic phenobarbital administration. Biochem Pharmacol. 1979 Mar 15;28(6):849–857. doi: 10.1016/0006-2952(79)90368-x. [DOI] [PubMed] [Google Scholar]
  12. WILLIAMS C. H., Jr, KAMIN H. Microsomal triphosphopyridine nucleotide-cytochrome c reductase of liver. J Biol Chem. 1962 Feb;237:587–595. [PubMed] [Google Scholar]
  13. Watanabe M., Konno K., Sato H. Axyl hydrocarbon hydroxylase in Morris hepatoma 5123D. Gan. 1975 Oct;66(5):499–503. [PubMed] [Google Scholar]
  14. Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res. 1970 Apr;31(1):125–150. doi: 10.1016/s0022-5320(70)90150-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES