Abstract
In the presence of Escherichia coli ribosomes and elongation factor EF) Tu, 2'(3')-O-L-phenylalanyladenosine (AdoPhe), the 3'-terminal portion of Phe-tRNAPhe, promotes the hydrolysis of GTP. The reaction requires the presence of both 30S and 50S ribosomal subunits and of proteins L7/L12 on the 50S subunit, is unaffected by mRNA [poly(uridylic acid)], and is strongly stimulated by EF-Ts. It is proposed that the AdoPhe-dependent GTP hydrolysis, like that promoted by aminoacyl-tRNA, is mediated by a ternary complex with EF-Tu and GTP; however, in contrast to aminoacyl-tRNA, AdoPhe is probably not retained by ribosomes after GTP hydrolysis. Phe-tRNAPhe or N-acetyl-Phe-tRNAPhe bound to the ribosomal acceptor site do not inhibit, but even stimulate, GTP hydrolysis by AdoPhe.EF-Tu.GTP. Thus, the binding site for EF-Tu on the ribosome is probably available for interaction with AdoPhe.EF-Tu.GTP regardless of whether the nearby acceptor site is vacant of occupied with aminoacyl-tRNA or peptidyl-tRNA. The results demonstrate the critical role of the 3'-terminal region of aminoacyl-tRNA in activating the EF-Tu- plus ribosome-dependent GTPase.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arai K. I., Kawakita M., Kaziro Y., Maeda T., Onishi S. I. Conformational transition in polypeptide elongation factor Tu as revealed by electron spin resonance. J Biol Chem. 1974 May 25;249(10):3311–3313. [PubMed] [Google Scholar]
- Arai K. I., Kawakita M., Kaziro Y. Studies on polypeptide elongation factors from Escherichia coli. II. Purification of factors Tu-guanosine diphosphate, Ts, and Tu-Ts, and crystallization of Tu-guanosine diphosphate and Tu-Ts. J Biol Chem. 1972 Nov 10;247(21):7029–7037. [PubMed] [Google Scholar]
- Arai K. i., Arai T., Kawakita M., Kaziro Y. Further studies on the properties of the polypeptide chain elongation factors Tu and Ts: hydrogen-tritium exchange, optical rotatory dispersion, and intrinsic fluorescence. J Biochem. 1977 May;81(5):1335–1346. [PubMed] [Google Scholar]
- Arai K., Arai T., Kawakita M., Kaziro Y. Conformational transitions of polypeptide chain elongation factor Tu. I. Studies with hydrophobic probes. J Biochem. 1975 May;77(5):1095–1106. doi: 10.1093/oxfordjournals.jbchem.a130810. [DOI] [PubMed] [Google Scholar]
- Ballesta J. P., Vazquez D. Elongation factor T-dependent hydrolysis of guanosine triphosphate resistant to thiostrepton. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3058–3062. doi: 10.1073/pnas.69.10.3058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beres L., Lucas-Lenard J. Studies on the fluorescence of the Y base of yeast phenylalanine transfer ribonucleic acid. Effect of pH, aminoacylation, and interaction with elongation factor Tu. Biochemistry. 1973 Sep 25;12(20):3998–4002. doi: 10.1021/bi00744a033. [DOI] [PubMed] [Google Scholar]
- CONWAY T. W., LIPMANN F. CHARACTERIZATION OF A RIBOSOME-LINKED GUANOSINE TRIPHOSPHATASE IN ESCHERICHIA COLI EXTRACTS. Proc Natl Acad Sci U S A. 1964 Dec;52:1462–1469. doi: 10.1073/pnas.52.6.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crane L. J., Miller D. L. Guanosine triphosphate and guanosine diphosphate as conformation-determining molecules. Differential interaction of a fluorescent probe with the guanosine nucleotide complexes of bacterial elongation factor Tu. Biochemistry. 1974 Feb 26;13(5):933–938. doi: 10.1021/bi00702a017. [DOI] [PubMed] [Google Scholar]
- Girbes T., Vazquez D., Modolell J. Polypeptide-chain elongation promoted by guanyl-5'-yl imidodiphosphate. Eur J Biochem. 1976 Aug 1;67(1):257–265. doi: 10.1111/j.1432-1033.1976.tb10657.x. [DOI] [PubMed] [Google Scholar]
- Gordon J. Hydrolysis of guanosine 5'-triphosphate associated wh binding of aminoacyl transfer ribonucleic acid to ribosomes. J Biol Chem. 1969 Oct 25;244(20):5680–5686. [PubMed] [Google Scholar]
- Hamel E., Koka M., Nakamoto T. Requirement of an Escherichia coli 50 S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate. J Biol Chem. 1972 Feb 10;247(3):805–814. [PubMed] [Google Scholar]
- Hamel E., Nakamoto T. Effect of methanol on the partial reactions of polypeptide chain elongation. Biochemistry. 1972 Oct 10;11(21):3933–3938. doi: 10.1021/bi00771a016. [DOI] [PubMed] [Google Scholar]
- Hopfield J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4135–4139. doi: 10.1073/pnas.71.10.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonák J., Rychlík I., Smrt J., Holý A. The binding site for the 3'-terminus of aminoacyl-tRNA in the molecule of elongation factor Tu from Escherichia coli. FEBS Lett. 1979 Feb 15;98(2):329–332. doi: 10.1016/0014-5793(79)80210-0. [DOI] [PubMed] [Google Scholar]
- Jurnak F., Rich A., Miller D. Preliminary x-ray diffraction data for tetragonal crystals of trypsinized Escherichia coli elongation factor. J Mol Biol. 1977 Sep;115(1):103–110. doi: 10.1016/0022-2836(77)90250-9. [DOI] [PubMed] [Google Scholar]
- Kabsch W., Gast W. H., Schulz G. E., Leberman R. Low resolution structure of partially trypsin-degraded polypeptide elongation factor, EF-TU, from Escherichia coli. J Mol Biol. 1977 Dec 25;117(4):999–1012. doi: 10.1016/s0022-2836(77)80009-0. [DOI] [PubMed] [Google Scholar]
- Kawakita M., Arai K., Kaziro Y. Interactions between elongation factor tu-guanosine triphosphate and ribosomes and the role of ribosome-bound transfer RNA in guanosine triphosphatase reaction. J Biochem. 1974 Oct;76(4):801–809. [PubMed] [Google Scholar]
- Kurland C. G. The role of guanine nucleotides in protein biosynthesis. Biophys J. 1978 Jun;22(3):373–392. doi: 10.1016/S0006-3495(78)85494-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Modolell J., Cabrer B., Parmeggiani A., Vazquez D. Inhibition by siomycin and thiostrepton of both aminoacyl-tRNA and factor G binding to ribosomes. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1796–1800. doi: 10.1073/pnas.68.8.1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Modolell J., Cabrer B., Váquez D. The interaction of elongation factor G with N-acetylphenylalanyl transfer RNA-ribosome complexes. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3561–3565. doi: 10.1073/pnas.70.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Modolell J., Cabrer B., Vázquez D. The stoichiometry of ribosomal translocation. J Biol Chem. 1973 Dec 25;248(24):8356–8360. [PubMed] [Google Scholar]
- Modolell J., Vazquez D. Inhibition by aminoacyl transfer ribonucleic acid of elongation factor G-dependent binding of guanosine nucleotide to ribosomes. J Biol Chem. 1973 Jan 25;248(2):488–493. [PubMed] [Google Scholar]
- Nombela C., Ochoa S. Conformational control of the interaction of eukaryotic elongation factors EF-1 and EF-2 with ribosomes. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3556–3560. doi: 10.1073/pnas.70.12.3556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ono Y., Skoultchi A., Waterson J., Lengyel P. Peptide chain elongation: GTP cleavage catalysed by factors binding aminoacyl-transfer RNA to the ribosome. Nature. 1969 May 17;222(5194):645–648. doi: 10.1038/222645a0. [DOI] [PubMed] [Google Scholar]
- Pingoud A., Urbanke C., Krauss G., Peters F., Maass G. Ternary complex formation between elongation factor Tu, GTP and aminoacyl-tRNA: an equilibrium study. Eur J Biochem. 1977 Sep;78(2):403–409. doi: 10.1111/j.1432-1033.1977.tb11752.x. [DOI] [PubMed] [Google Scholar]
- Printz M. P., Miller D. L. Evidence for conformational changes in elongation factor Tu induced by GTP and GDP. Biochem Biophys Res Commun. 1973 Jul 2;53(1):149–156. doi: 10.1016/0006-291x(73)91413-7. [DOI] [PubMed] [Google Scholar]
- Ravel J. M., Shorey R. A., Shive W. Relationship between peptidyl transferase activity and interaction of ribosomes with phenylalanyl transfer ribonucleic acid--guanosine 5'-triphosphate--TIu complex. Biochemistry. 1970 Dec 8;9(25):5028–5033. doi: 10.1021/bi00827a030. [DOI] [PubMed] [Google Scholar]
- Ringer D., Chládek S. Interaction of elongation factor Tu with 2'(3')-O-aminoacyloligonucleotides derived from the 3' terminus of aminoacyl-tRNA. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2950–2954. doi: 10.1073/pnas.72.8.2950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sander G., Marsh R. C., Parmeggiani A. Isolation and characterization of two acidic proteins from the 50S subunit required for GTPase activities of both EF G and EF T. Biochem Biophys Res Commun. 1972 May 26;47(4):866–873. doi: 10.1016/0006-291x(72)90573-6. [DOI] [PubMed] [Google Scholar]
- Thompson R. C., Stone P. J. Proofreading of the codon-anticodon interaction on ribosomes. Proc Natl Acad Sci U S A. 1977 Jan;74(1):198–202. doi: 10.1073/pnas.74.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weissbach H., Redfield B., Yamasaki E., Davis R. C., Jr, Pestka S., Brot N. Studies on the ribosomal sites involved in factors Tu and G-dependent reactions. Arch Biochem Biophys. 1972 Mar;149(1):110–117. doi: 10.1016/0003-9861(72)90304-9. [DOI] [PubMed] [Google Scholar]
- Wolf H., Chinali G., Parmeggiani A. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4910–4914. doi: 10.1073/pnas.71.12.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
