Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Feb;77(2):905–909. doi: 10.1073/pnas.77.2.905

Hydrolysis of GTP on elongation factor Tu.ribosome complexes promoted by 2'(3')-O-L-phenylalanyladenosine.

S Campuzano, J Modolell
PMCID: PMC348390  PMID: 6987671

Abstract

In the presence of Escherichia coli ribosomes and elongation factor EF) Tu, 2'(3')-O-L-phenylalanyladenosine (AdoPhe), the 3'-terminal portion of Phe-tRNAPhe, promotes the hydrolysis of GTP. The reaction requires the presence of both 30S and 50S ribosomal subunits and of proteins L7/L12 on the 50S subunit, is unaffected by mRNA [poly(uridylic acid)], and is strongly stimulated by EF-Ts. It is proposed that the AdoPhe-dependent GTP hydrolysis, like that promoted by aminoacyl-tRNA, is mediated by a ternary complex with EF-Tu and GTP; however, in contrast to aminoacyl-tRNA, AdoPhe is probably not retained by ribosomes after GTP hydrolysis. Phe-tRNAPhe or N-acetyl-Phe-tRNAPhe bound to the ribosomal acceptor site do not inhibit, but even stimulate, GTP hydrolysis by AdoPhe.EF-Tu.GTP. Thus, the binding site for EF-Tu on the ribosome is probably available for interaction with AdoPhe.EF-Tu.GTP regardless of whether the nearby acceptor site is vacant of occupied with aminoacyl-tRNA or peptidyl-tRNA. The results demonstrate the critical role of the 3'-terminal region of aminoacyl-tRNA in activating the EF-Tu- plus ribosome-dependent GTPase.

Full text

PDF
905

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai K. I., Kawakita M., Kaziro Y., Maeda T., Onishi S. I. Conformational transition in polypeptide elongation factor Tu as revealed by electron spin resonance. J Biol Chem. 1974 May 25;249(10):3311–3313. [PubMed] [Google Scholar]
  2. Arai K. I., Kawakita M., Kaziro Y. Studies on polypeptide elongation factors from Escherichia coli. II. Purification of factors Tu-guanosine diphosphate, Ts, and Tu-Ts, and crystallization of Tu-guanosine diphosphate and Tu-Ts. J Biol Chem. 1972 Nov 10;247(21):7029–7037. [PubMed] [Google Scholar]
  3. Arai K. i., Arai T., Kawakita M., Kaziro Y. Further studies on the properties of the polypeptide chain elongation factors Tu and Ts: hydrogen-tritium exchange, optical rotatory dispersion, and intrinsic fluorescence. J Biochem. 1977 May;81(5):1335–1346. [PubMed] [Google Scholar]
  4. Arai K., Arai T., Kawakita M., Kaziro Y. Conformational transitions of polypeptide chain elongation factor Tu. I. Studies with hydrophobic probes. J Biochem. 1975 May;77(5):1095–1106. doi: 10.1093/oxfordjournals.jbchem.a130810. [DOI] [PubMed] [Google Scholar]
  5. Ballesta J. P., Vazquez D. Elongation factor T-dependent hydrolysis of guanosine triphosphate resistant to thiostrepton. Proc Natl Acad Sci U S A. 1972 Oct;69(10):3058–3062. doi: 10.1073/pnas.69.10.3058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beres L., Lucas-Lenard J. Studies on the fluorescence of the Y base of yeast phenylalanine transfer ribonucleic acid. Effect of pH, aminoacylation, and interaction with elongation factor Tu. Biochemistry. 1973 Sep 25;12(20):3998–4002. doi: 10.1021/bi00744a033. [DOI] [PubMed] [Google Scholar]
  7. CONWAY T. W., LIPMANN F. CHARACTERIZATION OF A RIBOSOME-LINKED GUANOSINE TRIPHOSPHATASE IN ESCHERICHIA COLI EXTRACTS. Proc Natl Acad Sci U S A. 1964 Dec;52:1462–1469. doi: 10.1073/pnas.52.6.1462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crane L. J., Miller D. L. Guanosine triphosphate and guanosine diphosphate as conformation-determining molecules. Differential interaction of a fluorescent probe with the guanosine nucleotide complexes of bacterial elongation factor Tu. Biochemistry. 1974 Feb 26;13(5):933–938. doi: 10.1021/bi00702a017. [DOI] [PubMed] [Google Scholar]
  9. Girbes T., Vazquez D., Modolell J. Polypeptide-chain elongation promoted by guanyl-5'-yl imidodiphosphate. Eur J Biochem. 1976 Aug 1;67(1):257–265. doi: 10.1111/j.1432-1033.1976.tb10657.x. [DOI] [PubMed] [Google Scholar]
  10. Gordon J. Hydrolysis of guanosine 5'-triphosphate associated wh binding of aminoacyl transfer ribonucleic acid to ribosomes. J Biol Chem. 1969 Oct 25;244(20):5680–5686. [PubMed] [Google Scholar]
  11. Hamel E., Koka M., Nakamoto T. Requirement of an Escherichia coli 50 S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate. J Biol Chem. 1972 Feb 10;247(3):805–814. [PubMed] [Google Scholar]
  12. Hamel E., Nakamoto T. Effect of methanol on the partial reactions of polypeptide chain elongation. Biochemistry. 1972 Oct 10;11(21):3933–3938. doi: 10.1021/bi00771a016. [DOI] [PubMed] [Google Scholar]
  13. Hopfield J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4135–4139. doi: 10.1073/pnas.71.10.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jonák J., Rychlík I., Smrt J., Holý A. The binding site for the 3'-terminus of aminoacyl-tRNA in the molecule of elongation factor Tu from Escherichia coli. FEBS Lett. 1979 Feb 15;98(2):329–332. doi: 10.1016/0014-5793(79)80210-0. [DOI] [PubMed] [Google Scholar]
  15. Jurnak F., Rich A., Miller D. Preliminary x-ray diffraction data for tetragonal crystals of trypsinized Escherichia coli elongation factor. J Mol Biol. 1977 Sep;115(1):103–110. doi: 10.1016/0022-2836(77)90250-9. [DOI] [PubMed] [Google Scholar]
  16. Kabsch W., Gast W. H., Schulz G. E., Leberman R. Low resolution structure of partially trypsin-degraded polypeptide elongation factor, EF-TU, from Escherichia coli. J Mol Biol. 1977 Dec 25;117(4):999–1012. doi: 10.1016/s0022-2836(77)80009-0. [DOI] [PubMed] [Google Scholar]
  17. Kawakita M., Arai K., Kaziro Y. Interactions between elongation factor tu-guanosine triphosphate and ribosomes and the role of ribosome-bound transfer RNA in guanosine triphosphatase reaction. J Biochem. 1974 Oct;76(4):801–809. [PubMed] [Google Scholar]
  18. Kurland C. G. The role of guanine nucleotides in protein biosynthesis. Biophys J. 1978 Jun;22(3):373–392. doi: 10.1016/S0006-3495(78)85494-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Modolell J., Cabrer B., Parmeggiani A., Vazquez D. Inhibition by siomycin and thiostrepton of both aminoacyl-tRNA and factor G binding to ribosomes. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1796–1800. doi: 10.1073/pnas.68.8.1796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Modolell J., Cabrer B., Váquez D. The interaction of elongation factor G with N-acetylphenylalanyl transfer RNA-ribosome complexes. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3561–3565. doi: 10.1073/pnas.70.12.3561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Modolell J., Cabrer B., Vázquez D. The stoichiometry of ribosomal translocation. J Biol Chem. 1973 Dec 25;248(24):8356–8360. [PubMed] [Google Scholar]
  22. Modolell J., Vazquez D. Inhibition by aminoacyl transfer ribonucleic acid of elongation factor G-dependent binding of guanosine nucleotide to ribosomes. J Biol Chem. 1973 Jan 25;248(2):488–493. [PubMed] [Google Scholar]
  23. Nombela C., Ochoa S. Conformational control of the interaction of eukaryotic elongation factors EF-1 and EF-2 with ribosomes. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3556–3560. doi: 10.1073/pnas.70.12.3556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ono Y., Skoultchi A., Waterson J., Lengyel P. Peptide chain elongation: GTP cleavage catalysed by factors binding aminoacyl-transfer RNA to the ribosome. Nature. 1969 May 17;222(5194):645–648. doi: 10.1038/222645a0. [DOI] [PubMed] [Google Scholar]
  25. Pingoud A., Urbanke C., Krauss G., Peters F., Maass G. Ternary complex formation between elongation factor Tu, GTP and aminoacyl-tRNA: an equilibrium study. Eur J Biochem. 1977 Sep;78(2):403–409. doi: 10.1111/j.1432-1033.1977.tb11752.x. [DOI] [PubMed] [Google Scholar]
  26. Printz M. P., Miller D. L. Evidence for conformational changes in elongation factor Tu induced by GTP and GDP. Biochem Biophys Res Commun. 1973 Jul 2;53(1):149–156. doi: 10.1016/0006-291x(73)91413-7. [DOI] [PubMed] [Google Scholar]
  27. Ravel J. M., Shorey R. A., Shive W. Relationship between peptidyl transferase activity and interaction of ribosomes with phenylalanyl transfer ribonucleic acid--guanosine 5'-triphosphate--TIu complex. Biochemistry. 1970 Dec 8;9(25):5028–5033. doi: 10.1021/bi00827a030. [DOI] [PubMed] [Google Scholar]
  28. Ringer D., Chládek S. Interaction of elongation factor Tu with 2'(3')-O-aminoacyloligonucleotides derived from the 3' terminus of aminoacyl-tRNA. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2950–2954. doi: 10.1073/pnas.72.8.2950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sander G., Marsh R. C., Parmeggiani A. Isolation and characterization of two acidic proteins from the 50S subunit required for GTPase activities of both EF G and EF T. Biochem Biophys Res Commun. 1972 May 26;47(4):866–873. doi: 10.1016/0006-291x(72)90573-6. [DOI] [PubMed] [Google Scholar]
  30. Thompson R. C., Stone P. J. Proofreading of the codon-anticodon interaction on ribosomes. Proc Natl Acad Sci U S A. 1977 Jan;74(1):198–202. doi: 10.1073/pnas.74.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weissbach H., Redfield B., Yamasaki E., Davis R. C., Jr, Pestka S., Brot N. Studies on the ribosomal sites involved in factors Tu and G-dependent reactions. Arch Biochem Biophys. 1972 Mar;149(1):110–117. doi: 10.1016/0003-9861(72)90304-9. [DOI] [PubMed] [Google Scholar]
  32. Wolf H., Chinali G., Parmeggiani A. Kirromycin, an inhibitor of protein biosynthesis that acts on elongation factor Tu. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4910–4914. doi: 10.1073/pnas.71.12.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES