Abstract
Calcium uptake by skinned muscle fibers is stimulated by physiological concentrations of insulin. These fibers, which lack a functional plasma membrane, are permeable to macromolecules but retain extensive portions of their sarcolemma in the form of transverse tubules intercalated between the myofibrils. They have an active sarcoplasmic reticulum that removes 45Ca2+ from solution at concentrations below the threshold that initiates contraction (less than 1 microM). The Ca2+ uptake activity is stimulated by insulin, presumably in response to its binding to those receptors located in the transverse tubules. Addition of glucose 6-phosphate, whose intracellular concentration increases in response to insulin, also stimulates Ca2+ uptake, a unique property of this preparation. These data indicate that insulin and glucose 6-phosphate act in concert to stimulate the sarcoplasmic reticulum. The resulting decrease in myoplasmic Ca2+ and the increase in glucose 6-phosphate would serve to mediate some of the anabolic effects of the hormone.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brown J. H., Thompson B., Mayer S. E. Conversion of skeletal muscle glycogen synthase to multiple glucose 6-phosphate dependent forms by cyclic adenosine monophosphate dependent and independent protein kinases. Biochemistry. 1977 Dec 13;16(25):5501–5508. doi: 10.1021/bi00644a017. [DOI] [PubMed] [Google Scholar]
- Bruns D. E., McDonald J. M., Jarett L. Energy-dependent calcium transport in endoplasmic reticulum of adipocytes. J Biol Chem. 1976 Nov 25;251(22):7191–7197. [PubMed] [Google Scholar]
- Bruns D. E., McDonald J. M., Jarett L. Properties of passive binding of calcium to endoplasmic reticulum from adipocytes. J Biol Chem. 1977 Feb 10;252(3):927–932. [PubMed] [Google Scholar]
- Caswell A. H., Baker S. P., Boyd H., Potter L. T., Garcia M. beta-adrenergic receptor and adenylate cyclase in transverse tubules of skeletal muscle. J Biol Chem. 1978 May 10;253(9):3049–3054. [PubMed] [Google Scholar]
- Caswell A. H., Lau Y. H., Garcia M., Brunschwig J. P. Recognition and junction formation by isolated transverse tubules and terminal cisternae of skeletal muscle. J Biol Chem. 1979 Jan 10;254(1):202–208. [PubMed] [Google Scholar]
- Clausen T., Martin B. R. The effect of insulin on the washout of [45Ca]calcium from adipocytes and soleus muscle of the rat. Biochem J. 1977 Apr 15;164(1):251–255. doi: 10.1042/bj1640251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen P. The subunit structure of rabbit-skeletal-muscle phosphorylase kinase, and the molecular basis of its activation reactions. Eur J Biochem. 1973 Apr 2;34(1):1–14. doi: 10.1111/j.1432-1033.1973.tb02721.x. [DOI] [PubMed] [Google Scholar]
- DePaoli-Roach A. A., Roach P. J., Larner J. Rabbit skeletal muscle phosphorylase kinase. Comparison of glycogen synthase and phosphorylase as substrates. J Biol Chem. 1979 May 25;254(10):4212–4219. [PubMed] [Google Scholar]
- Diamond I., Goldberg A. L. Uptake and release of 45Ca by brain microsomes, synaptosomes and synaptic vesicles. J Neurochem. 1971 Aug;18(8):1419–1431. doi: 10.1111/j.1471-4159.1971.tb00005.x. [DOI] [PubMed] [Google Scholar]
- Eckstein F. Enzymatic synthesis of adenosine 5'-O-(3-[35S]-thiotriphosphate). Biochim Biophys Acta. 1977 Jul 8;483(1):1–5. doi: 10.1016/0005-2744(77)90002-x. [DOI] [PubMed] [Google Scholar]
- Ernst V., Levin D. H., London I. M. Evidence that glucose 6-phosphate regulates protein synthesis initiation in reticulocyte lysates. J Biol Chem. 1978 Oct 25;253(20):7163–7172. [PubMed] [Google Scholar]
- Ferraz C., Demaille J. G., Fisher E. H. The protein inhibitor of adenosine 3':5'-monophosphate-dependent protein kinases. Isolation and characterization of three isoinhibitors. Biochimie. 1979;61(5-6):645–651. doi: 10.1016/s0300-9084(79)80162-5. [DOI] [PubMed] [Google Scholar]
- Hales C. N., Luzio J. P., Chandler J. A., Herman L. Localization of calcium in the smooth endoplasmic reticulum of rat isolated fat cells. J Cell Sci. 1974 Jun;15(1):1–15. doi: 10.1242/jcs.15.1.1. [DOI] [PubMed] [Google Scholar]
- Hayakawa T., Perkins J. P., Walsh D. A., Krebs E. G. Physiochemical properties of rabbit skeletal muscle phosphorylase kinase. Biochemistry. 1973 Feb;12(4):567–573. doi: 10.1021/bi00728a001. [DOI] [PubMed] [Google Scholar]
- Hörl W. H., Heilmeyer L. M., Jr Evidence for the participation of a Ca2+-dependent protein kinase and protein phosphatase in the regulation of the Ca2+ transport ATPase of the sarcoplasmic reticulum. 2. Effect of phosphorylase kinase and phosphorylase phosphatase. Biochemistry. 1978 Mar 7;17(5):766–772. doi: 10.1021/bi00598a002. [DOI] [PubMed] [Google Scholar]
- Hörl W. H., Jennissen H. P., Heilmeyer L. M., Jr Evidence for the participation of a Ca2+-dependent protein kinase and a protein phosphatase in the regulation of the Ca2+ transport ATPase of the sarcoplasmic reticulum. 1. Effect of inhibitors of the Ca2+-dependent protein kinase and protein phosphatase. Biochemistry. 1978 Mar 7;17(5):759–766. doi: 10.1021/bi00598a001. [DOI] [PubMed] [Google Scholar]
- KREBS E. G., LOVE D. S., BRATVOLD G. E., TRAYSER K. A., MEYER W. L., FISCHER E. H. PURIFICATION AND PROPERTIES OF RABBIT SKELETAL MUSCLE PHOSPHORYLASE B KINASE. Biochemistry. 1964 Aug;3:1022–1033. doi: 10.1021/bi00896a003. [DOI] [PubMed] [Google Scholar]
- Kerrick W. G., Best P. M. Calcium ion release in mechanically disrupted heart cells. Science. 1974 Feb 1;183(4123):435–437. doi: 10.1126/science.183.4123.435. [DOI] [PubMed] [Google Scholar]
- Kerrick W. G., Donaldson S. K. The effects of Mg 2+ on submaximum Ca 2+ -activated tension in skinned fibers of frog skeletal muscle. Biochim Biophys Acta. 1972 Jul 12;275(1):117–122. doi: 10.1016/0005-2728(72)90030-8. [DOI] [PubMed] [Google Scholar]
- Kerrick W. G., Krasner B. Disruption of the sarcolemma of mammalian skeletal muscle fibers by homogenization. J Appl Physiol. 1975 Dec;39(6):1052–1055. doi: 10.1152/jappl.1975.39.6.1052. [DOI] [PubMed] [Google Scholar]
- Kissebah A. H., Clarke P., Vydelingum N., Hope-Gill H., Tulloch B., Fraser T. R. The role of calcium in insulin action. III. Calcium distribution in fat cells; its kinetics and the effects of adrenaline, insulin and procaine-HCl. Eur J Clin Invest. 1975 Jul 29;5(4):339–349. doi: 10.1111/j.1365-2362.1975.tb00463.x. [DOI] [PubMed] [Google Scholar]
- Lawrence J. C., Jr, Larner J. Activation of glycogen synthase in rat adipocytes by insulin and glucose involves increased glucose transport and phosphorylation. J Biol Chem. 1978 Apr 10;253(7):2104–2113. [PubMed] [Google Scholar]
- Lawrence J. C., Jr, Larner J. Effects of insulin, methoxamine, and calcium on glycogen synthase in rat adipocytes. Mol Pharmacol. 1978 Nov;14(6):1079–1091. [PubMed] [Google Scholar]
- Lenz J. R., Chatterjee G. E., Maroney P. A., Baglioni C. Phosphorylated sugars stimulate protein synthesis and Met-tRNAf binding activity in extracts of mammalian cells. Biochemistry. 1978 Jan 10;17(1):80–87. doi: 10.1021/bi00594a011. [DOI] [PubMed] [Google Scholar]
- MORGAN H. E., PARMEGGIANI A. REGULATION OF GLYCOGENOLYSIS IN MUSCLE. 3. CONTROL OF MUSCLE GLYCOGEN PHOSPHORYLASE ACTIVITY. J Biol Chem. 1964 Aug;239:2440–2445. [PubMed] [Google Scholar]
- McDonald J. M., Bruns D. E., Jarett L. Ability of insulin to increase calcium uptake by adipocyte endoplasmic reticulum. J Biol Chem. 1978 May 25;253(10):3504–3508. [PubMed] [Google Scholar]
- McDonald J. M., Bruns D. E., Jarett L. The ability of insulin to alter the stable calcium pools of isolated adipocyte subcellular fractions. Biochem Biophys Res Commun. 1976 Jul 12;71(1):114–121. doi: 10.1016/0006-291x(76)90256-4. [DOI] [PubMed] [Google Scholar]
- Otsuki I. ATP-dependent Ca uptake of brain microsomes. J Biochem. 1969 Nov;66(5):645–650. [PubMed] [Google Scholar]
- Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
- Roach P. J., DePaoli-Roach A. A., Larner J. Ca2+-stimulated phosphorylation of muscle glycogen synthase by phosphorylase b kinase. J Cyclic Nucleotide Res. 1978 Aug;4(4):245–257. [PubMed] [Google Scholar]
- Seals J. R., McDonald J. M., Jarett L. Insulin effect on protein phosphorylation of plasma membranes and mitochondria in a subcellular system from rat adipocytes. I. Identification of insulin-sensitive phosphoproteins. J Biol Chem. 1979 Aug 10;254(15):6991–6996. [PubMed] [Google Scholar]
- Seals J. R., McDonald J. M., Jarett L. Insulin effect on protein phosphorylation of plasma membranes and mitochondria in a subcellular system from rat adipocytes. II. Characterization of insulin-sensitive phosphoproteins and conditions for observation of the insulin effect. J Biol Chem. 1979 Aug 10;254(15):6997–7001. [PubMed] [Google Scholar]
- Su J. Y., Kerrick W. G. Effects of halothane on Ca2+-activated tension development in mechanically disrupted rabbit myocardial fibers. Pflugers Arch. 1978 Jul 18;375(2):111–117. doi: 10.1007/BF00584232. [DOI] [PubMed] [Google Scholar]
- Su J. Y., Kerrick W. G. Effects of halothane on caffeine-induced tension transients in functionally skinned myocardial fibers. Pflugers Arch. 1979 May 15;380(1):29–34. doi: 10.1007/BF00582608. [DOI] [PubMed] [Google Scholar]
- Tada M., Yamamoto T., Tonomura Y. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev. 1978 Jan;58(1):1–79. doi: 10.1152/physrev.1978.58.1.1. [DOI] [PubMed] [Google Scholar]
- Weber A., Herz R. The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J Gen Physiol. 1968 Nov;52(5):750–759. doi: 10.1085/jgp.52.5.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida H., Kadota K., Fujisawa H. Adenosine triphosphate dependent calcium binding of microsomes and nerve endings. Nature. 1966 Oct 15;212(5059):291–292. doi: 10.1038/212291a0. [DOI] [PubMed] [Google Scholar]
