Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Feb;77(2):944–948. doi: 10.1073/pnas.77.2.944

Electron microscope study of the kinetics of the fiber-to-crystal transition of sickle cell hemoglobin.

S M Wilson, M W Makinen
PMCID: PMC348399  PMID: 6928690

Abstract

The intermediates and the rate-limiting step in the crystallization of deoxygenated sickle hemoglobin have been determined by a kinetic study with the use of electron microscopy. In slowly stirred solutions of deoxygenated hemoglobin S [Pumphrey, J. & Steinhardt, J. (1977) J. Mol. Biol. 112, 359--375], the sequential appearance of fibers have a diameter of approximately equal to 210 A, bundles of aligned fibers in well-ordered arrays, "thick" fibers of approximately equal to 470 A diameter, and microcrystals is observed. Only the fibers having a diameter of approximately equal to 210 A and bundles of aligned fibers are assigned as kinetically important intermediates of the fiber-to-crystal transition. Addition of microscopic seed crystals obtained from slowly stirred solutions of deoxyhemoglobin S to a solution composed of only fibers and hemoglobin monomers results in more rapid crystallization than in control solutions. Addition of seed crystals after the formation of bindles of aligned fibers does not alter the overall kinetics of crystallization. The results demonstrate that alignment of fibers is the rate-limiting step in the crystallization process and results in formation of nucleation sites for crystal growth.

Full text

PDF
944

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Crepeau R. H., Dykes G., Edelstein S. J. Structure of the fibers of sickle cell hemoglobin in the presence of 2,3-diphosphoglycerate. Biochem Biophys Res Commun. 1977 Mar 21;75(2):496–502. doi: 10.1016/0006-291x(77)91069-5. [DOI] [PubMed] [Google Scholar]
  2. Dykes G., Crepeau R. H., Edelstein S. J. Three-dimensional reconstruction of the fibres of sickle cell haemoglobin. Nature. 1978 Apr 6;272(5653):506–510. doi: 10.1038/272506a0. [DOI] [PubMed] [Google Scholar]
  3. Eaton W. A., Hofrichter J., Ross P. D. Editorial: Delay time of gelation: a possible determinant of clinical severity in sickle cell disease. Blood. 1976 Apr;47(4):621–627. [PubMed] [Google Scholar]
  4. Finch J. T., Perutz M. F., Bertles J. F., Döbler J. Structure of sickled erythrocytes and of sickle-cell hemoglobin fibers. Proc Natl Acad Sci U S A. 1973 Mar;70(3):718–722. doi: 10.1073/pnas.70.3.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hofrichter J., Ross P. D., Eaton W. A. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4864–4868. doi: 10.1073/pnas.71.12.4864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hofrichter J., Ross P. D., Eaton W. A. Supersaturation in sickle cell hemoglobin solutions. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3035–3039. doi: 10.1073/pnas.73.9.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. JANDL J. H., SIMMONS R. L., CASTLE W. B. Red cell filtration and the pathogenesis of certain hemolytic anemias. Blood. 1961 Aug;18:133–148. [PubMed] [Google Scholar]
  8. Josephs R., Jarosch H. S., Edelstein S. J. Polymorphism of sickle cell hemoglobin fibers. J Mol Biol. 1976 Apr 15;102(3):409–426. doi: 10.1016/0022-2836(76)90324-7. [DOI] [PubMed] [Google Scholar]
  9. Magdoff-Fairchild B., Chiu C. C. X-ray diffraction studies of fibers and crystals of deoxygenated sickle cell hemoglobin. Proc Natl Acad Sci U S A. 1979 Jan;76(1):223–226. doi: 10.1073/pnas.76.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Magdoff-Fairchild B., Swerdlow P. H., Bertles J. F. Intermolecular organization of deoxygenated sickle haemoglobin determined by x-ray diffraction. Nature. 1972 Sep 22;239(5369):217–219. doi: 10.1038/239217a0. [DOI] [PubMed] [Google Scholar]
  11. Messer M. J., Harris J. W. Filtration characteristics of sickle cells: rates of alteration of filterability after deoxygenation and reoxygenation, and correlations with sickling and unsickling. J Lab Clin Med. 1970 Oct;76(4):537–547. [PubMed] [Google Scholar]
  12. Ohtsuki M., White S. L., Zeitler E., Wellems T. E., Fuller S. D., Zwick M., Makinen M. W., Sigler P. B. Electron microscopy of fibers and discs of hemoglobin S having sixfold symmetry. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5538–5542. doi: 10.1073/pnas.74.12.5538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pumphrey J. G., Steinhardt J. Crystallization of sickle hemoglobin from gently agitated solutions--an alternative to gelation. J Mol Biol. 1977 May 25;112(3):359–375. doi: 10.1016/s0022-2836(77)80187-3. [DOI] [PubMed] [Google Scholar]
  14. Ross P. D., Hofrichter J., Eaton W. A. Calorimetric and optical characterization of sickle cell hemoglobin gelation. J Mol Biol. 1975 Aug 5;96(2):239–253. doi: 10.1016/0022-2836(75)90345-9. [DOI] [PubMed] [Google Scholar]
  15. Stein P. D., Sabbah H. N., Mandal A. K. Augmentation of sickling process due to turbulent blood flow. J Appl Physiol. 1976 Jan;40(1):60–66. doi: 10.1152/jappl.1976.40.1.60. [DOI] [PubMed] [Google Scholar]
  16. Wellems T. E., Josephs R. Crystallization of deoxyhemoglobin S by fiber alignment and fusion. J Mol Biol. 1979 Dec 15;135(3):651–674. doi: 10.1016/0022-2836(79)90170-0. [DOI] [PubMed] [Google Scholar]
  17. White J. G. The fine structure of sickled hemoglobin in situ. Blood. 1968 May;31(5):561–579. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES