Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Mar;77(3):1270–1273. doi: 10.1073/pnas.77.3.1270

Arogenate (pretyrosine) is an obligatory intermediate of L-tyrosine biosynthesis: confirmation in a microbial mutant.

A M Fazel, J R Bowen, R A Jensen
PMCID: PMC348475  PMID: 6929482

Abstract

Wild-type Brevibacterium flavum has been shown to possess arogenate dehydrogenase activity and to lack prephenate dehydrogenase, thereby providing presumptive evidence that arogenate (previously named "pretyrosine") is an obligatory intermediate of L-tyrosine biosynthesis. A similar enzymological pattern has been discerned in extracts made from wild-type cultures of various species of cyanobacteria. Application of rigorous molecular genetic criteria in confirmation of the exclusive role of arogenate in L-tyrosine synthesis was made possible by the isolation of an auxotrophic mutant exhibiting a nutritional requirement for L-tyrosine. The mutant was found to lack activity for arogenate dehydrogenase and to accumulate substantial amounts of arogenate behind the mutant block during starvation for L-tyrosine.

Full text

PDF
1270

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Brooks C. J., DeBusk B. G., DeBusk A. G. Cellular compartmentation of aromatic amino acids in Neurospora crassa. II. Synthesis and misplaced accumulation of phenylalanine in phen-2 auxotrophs. Biochem Genet. 1973 Oct;10(2):105–120. doi: 10.1007/BF00485759. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. D. Autocatalytic growth of a mutant due to accumulation of unstable phenylalanine precursor. Science. 1953 Aug 28;118(3061):251–252. doi: 10.1126/science.118.3061.251. [DOI] [PubMed] [Google Scholar]
  4. Fazel A. M., Jensen R. A. Aromatic aminotransferases in coryneform bacteria. J Bacteriol. 1979 Nov;140(2):580–587. doi: 10.1128/jb.140.2.580-587.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fazel A. M., Jensen R. A. Obligatory biosynthesis of L-tyrosine via the pretyrosine branchlet in coryneform bacteria. J Bacteriol. 1979 Jun;138(3):805–815. doi: 10.1128/jb.138.3.805-815.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jensen R. A., Nester E. W. Regulatory enzymes of aromatic amino acid biosynthesis in Bacillus subtilis. II. The enzymology of feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase. J Biol Chem. 1966 Jul 25;241(14):3373–3380. [PubMed] [Google Scholar]
  7. Jensen R. A., Pierson D. L. Evolutionary implications of different types of microbial enzymology for L-tyrosine biosynthesis. Nature. 1975 Apr 24;254(5502):667–671. doi: 10.1038/254667a0. [DOI] [PubMed] [Google Scholar]
  8. Jensen R. A., Zamir L., Saint Pierre M., Patel N., Pierson D. L. Isolation and preparation of pretyrosine, accumulated as a dead-end metabolite by Neurospora crassa. J Bacteriol. 1977 Dec;132(3):896–903. doi: 10.1128/jb.132.3.896-903.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Patel N., Pierson D. L., Jensen R. A. Dual enzymatic routes to L-tyrosine and L-phenylalanine via pretyrosine in Pseudomonas aeruginosa. J Biol Chem. 1977 Aug 25;252(16):5839–5846. [PubMed] [Google Scholar]
  10. Patel N., Stenmark-Cox S. L., Jensen R. A. Enzymological basis of reluctant auxotrophy for phenylalanine and tyrosine in Pseudomonas aeruginosa. J Biol Chem. 1978 May 10;253(9):2972–2978. [PubMed] [Google Scholar]
  11. Rubin J. L., Jensen R. A. Enzymology of l-Tyrosine Biosynthesis in Mung Bean (Vigna radiata [L.] Wilczek). Plant Physiol. 1979 Nov;64(5):727–734. doi: 10.1104/pp.64.5.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SMITH L. C., RAVEL J. M., LAX S. R., SHIVE W. The control of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthesis by phenylalanine and tyrosine. J Biol Chem. 1962 Nov;237:3566–3570. [PubMed] [Google Scholar]
  13. SRINIVASAN P. R., SPRINSON D. B. 2-Keto-3-deoxy-D-arabo-heptonic acid 7-phosphate synthetase. J Biol Chem. 1959 Apr;234(4):716–722. [PubMed] [Google Scholar]
  14. Shiio I., Sugimoto S. Two components of chorismate mutase in Brevibacterium flavum. J Biochem. 1979 Jul;86(1):17–25. [PubMed] [Google Scholar]
  15. Stenmark S. L., Pierson D. L., Jensen R. A., Glover G. I. Blue-green bacteria synthesise L-tyrosine by the pretyrosine pathway. Nature. 1974 Feb 1;247(5439):290–292. doi: 10.1038/247290a0. [DOI] [PubMed] [Google Scholar]
  16. WEISS U., GILVARG C., MINGIOLI E. S., DAVID B. D. Aromatic biosynthesis. XI. The aromatization step in the synthesis of phenylalanine. Science. 1954 May 28;119(3100):774–775. doi: 10.1126/science.119.3100.774. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES