Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Mar;77(3):1403–1407. doi: 10.1073/pnas.77.3.1403

Selenium-containing tRNAs from Clostridium sticklandii: cochromatography of one species with L-prolyl-tRNA.

C S Chen, T C Stadtman
PMCID: PMC348503  PMID: 6154932

Abstract

75Se-Labeled tRNAs were synthesized by Clostridium sticklandii cultures supplemented with 1 microM sodium [75Se]selenite or [75Se]selenocysteine. This process is highly specific for selenium; it occurred in the presence of 1.2 mM sodium sulfide and was not decreased by the further addition of a 500-fold molar excess of cysteine. The 75Se in these tRNAs was located in the polynucleotide portion of the molecules and not in esterified (alkali-labile) selenocysteine. Inhibition of cell multiplication by antibiotics that block either protein synthesis or DNA-dependent RNA synthesis did not prevent this 75Se incorporation. Three [75Se]tRNAs were separated from C. sticklandii cells labeled in the presence of chloramphenicol and were partially purified by chromatography on benzoylated DEAE-cellulose and DEAE-Sephadex A-50 columns. These were designated seleno-tRNAs I, II, and III according to their elution sequence from benzoylated DEAE-cellulose. Cochromatography of purified seleno-tRNA II on DEAE-Sephadex A-50 with an L-proline-accepting species suggests that it is a selenium-containing L-prolyl-tRNA.

Full text

PDF
1403

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrell J. W., Kaufman E. E., Lipsett M. N. The biosynthesis of 4-thiouridylate. Separation and purification of two enzymes in the transfer ribonucleic acid-sulfurtransferase system. J Biol Chem. 1971 Jan 25;246(2):294–301. [PubMed] [Google Scholar]
  2. Cone J. E., Del Río R. M., Davis J. N., Stadtman T. C. Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2659–2663. doi: 10.1073/pnas.73.8.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cone J. E., del Río R. M., Stadtman T. C. Clostridial glycine reductase complex. Purification and characterization of the selenoprotein component. J Biol Chem. 1977 Aug 10;252(15):5337–5344. [PubMed] [Google Scholar]
  4. Forstrom J. W., Zakowski J. J., Tappel A. L. Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry. 1978 Jun 27;17(13):2639–2644. doi: 10.1021/bi00606a028. [DOI] [PubMed] [Google Scholar]
  5. Gillam I., Millward S., Blew D., von Tigerstrom M., Wimmer E., Tener G. M. The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry. 1967 Oct;6(10):3043–3056. doi: 10.1021/bi00862a011. [DOI] [PubMed] [Google Scholar]
  6. HOLLEY R. W. Large-scale preparation of yeast "soluble" ribonucleic acid. Biochem Biophys Res Commun. 1963 Jan 31;10:186–188. doi: 10.1016/0006-291x(63)90048-2. [DOI] [PubMed] [Google Scholar]
  7. HOSKINSON R. M., KHORANA H. G. STUDIES ON POLYNUCLEOTIDES. XLI. PURIFICATION OF PHENYLALANINE-SPECIFIC TRANSFER RIBONUCLEIC ACID FROM YEAST BY COUNTERCURRENT DISTRIBUTION. J Biol Chem. 1965 May;240:2129–2134. [PubMed] [Google Scholar]
  8. Hoffman J. L., McConnell K. P. The presence of 4-selenouridine in Escherichia coli tRNA. Biochim Biophys Acta. 1974 Sep 27;366(1):109–113. doi: 10.1016/0005-2787(74)90323-2. [DOI] [PubMed] [Google Scholar]
  9. Jones J. B., Dilworth G. L., Stadtman T. C. Occurrence of selenocysteine in the selenium-dependent formate dehydrogenase of Methanococcus vannielii. Arch Biochem Biophys. 1979 Jul;195(2):255–260. doi: 10.1016/0003-9861(79)90351-5. [DOI] [PubMed] [Google Scholar]
  10. Lipsett M. N. The isolation of 4-thiouridylic acid from the soluble ribonucleic acid of Escherichia coli. J Biol Chem. 1965 Oct;240(10):3975–3978. [PubMed] [Google Scholar]
  11. Ortwerth B. J., Carlson J. V. Lysine transfer RNA from liver: a sulfur-containing species that codes for AAG. Arch Biochem Biophys. 1977 Jan 15;178(1):278–284. doi: 10.1016/0003-9861(77)90192-8. [DOI] [PubMed] [Google Scholar]
  12. Pearson R. L., Weiss J. F., Kelmers A. D. Improved separation of transfer RNA's on polychlorotrifuoroethylene-supported reversed-phase chromatography columns. Biochim Biophys Acta. 1971 Feb 11;228(3):770–774. doi: 10.1016/0005-2787(71)90748-9. [DOI] [PubMed] [Google Scholar]
  13. Saelinger D. A., Hoffman J. L., McConnell K. P. Biosynthesis of selenobases in transfer RNA by Escherichia coli. J Mol Biol. 1972 Aug 14;69(1):9–17. doi: 10.1016/0022-2836(72)90020-4. [DOI] [PubMed] [Google Scholar]
  14. Stadtman T. C. Selenium-dependent clostridial glycine reductase. Methods Enzymol. 1978;53:373–382. doi: 10.1016/s0076-6879(78)53043-7. [DOI] [PubMed] [Google Scholar]
  15. Stadtman T. C. Selenium-dependent enzymes. Annu Rev Biochem. 1980;49:93–110. doi: 10.1146/annurev.bi.49.070180.000521. [DOI] [PubMed] [Google Scholar]
  16. Turner D. C., Stadtman T. C. Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch Biochem Biophys. 1973 Jan;154(1):366–381. doi: 10.1016/0003-9861(73)90069-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES