Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Mar;77(3):1607–1611. doi: 10.1073/pnas.77.3.1607

Functional characteristics of human T-cell subpopulations distinguished by a monoclonal antibody*

Edgar G Engleman , Claudia Benike , Barbara Osborne , Richard Goldsby §
PMCID: PMC348546  PMID: 6445560

Abstract

In animals and in man, diverse immunologic functions are mediated by specialized T-cell (thymus-derived lymphocyte) subsets that are distinguishable from one another on the basis of differences in cell surface determinants. Unfortunately, in humans, subset-specific antibodies have been difficult to generate. In this study, production of a murine monoclonal antibody specific for a subset of human T cells was achieved by fusing a sensitized B cell (bone marrow-derived cell) with a myeloma cell and isolating the antibody secreted by the resultant hybrid clone. This antibody binds 30-35% of peripheral T lymphocytes (Ta+ cells) but fails to bind remaining T lymphocytes (Ta- cells), B lymphocytes, or monocytes. Ta+ and Ta- subpopulations were separated with a fluorescence-activated cell sorter and their in vitro responses to various stimuli were assessed. Ta+ and Ta- cells respond equally well to soluble antigens, allogeneic B cells, and autologous B cells, but only Ta+ cells respond to concanavalin A. Ta+ cells cultured in the presence of concanavalin A gradually lose the Ta marker, an effect not observed after stimulation with phytohemagglutinin, soluble antigens, or alloantigens. These results suggest that the functional subpopulation of T cells defined by Ta does not correspond to any previously described human T cell subset. Furthermore, somatic cell hybridization has been shown to be a feasible method for production of monoclonal antibodies specific for subpopulations of human lymphocytes.

Keywords: hybrids, concanavalin A

Full text

PDF
1607

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner W. A., Hulett H. R., Sweet R. G., Herzenberg L. A. Fluorescence activated cell sorting. Rev Sci Instrum. 1972 Mar;43(3):404–409. doi: 10.1063/1.1685647. [DOI] [PubMed] [Google Scholar]
  2. Böyum A. A one-stage procedure for isolation of granulocytes and lymphocytes from human blood. General sedimentation properties of white blood cells in a 1g gravity field. Scand J Clin Lab Invest Suppl. 1968;97:51–76. [PubMed] [Google Scholar]
  3. Cantor H., Boyse E. A. Functional subclasses of T lymphocytes bearing different Ly antigens. II. Cooperation between subclasses of Ly+ cells in the generation of killer activity. J Exp Med. 1975 Jun 1;141(6):1390–1399. doi: 10.1084/jem.141.6.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cantor H., Shen F. W., Boyse E. A. Separation of helper T cells from suppressor T cells expressing different Ly components. II. Activation by antigen: after immunization, antigen-specific suppressor and helper activities are mediated by distinct T-cell subclasses. J Exp Med. 1976 Jun 1;143(6):1391–1340. doi: 10.1084/jem.143.6.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cerottini J. C., Brunner K. T. Cell-mediated cytotoxicity, allograft rejection, and tumor immunity. Adv Immunol. 1974;18:67–132. doi: 10.1016/s0065-2776(08)60308-9. [DOI] [PubMed] [Google Scholar]
  6. Chess L., MacDermott R. P., Schlossman S. F. Immunologic functions of isolated human lymphocyte subpopulations. I. Quantitative isolation of human T and B cells and response to mitogens. J Immunol. 1974 Oct;113(4):1113–1121. [PubMed] [Google Scholar]
  7. Chess L., MacDermott R. P., Schlossman S. F. Immunologic functions of isolated human lymphocyte subpopulations. II. Antigen triggering of T and B cells in vitro. J Immunol. 1974 Oct;113(4):1122–1127. [PubMed] [Google Scholar]
  8. Chess L., Schlossman S. F. Functional analysis of distinct human T-cell subsets bearing unique differentiation antigens. Contemp Top Immunobiol. 1977;7:363–379. doi: 10.1007/978-1-4684-3054-7_10. [DOI] [PubMed] [Google Scholar]
  9. Claman H. N., Chaperon E. A., Triplett R. F. Thymus-marrow cell combinations. Synergism in antibody production. Proc Soc Exp Biol Med. 1966 Aug-Sep;122(4):1167–1171. doi: 10.3181/00379727-122-31353. [DOI] [PubMed] [Google Scholar]
  10. Engleman E. G., McDevitt H. O. A suppressor T cell of the mixed lymphocyte reaction specific for the HLA-D region in man. J Clin Invest. 1978 Mar;61(3):828–838. doi: 10.1172/JCI108997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evans R. L., Breard J. M., Lazarus H., Schlossman S. F., Chess L. Detection, isolation, and functional characterization of two human T-cell subclasses bearing unique differentiation antigens. J Exp Med. 1977 Jan 1;145(1):221–233. doi: 10.1084/jem.145.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans R. L., Lazarus H., Penta A. C., Schlossman S. F. Two functionally distinct subpopulations of human T cells that collaborate in the generation of cytotoxic cells responsible for cell-mediated lympholysis. J Immunol. 1978 Apr;120(4):1423–1428. [PubMed] [Google Scholar]
  13. Feldmann M., Kontiainen S. Suppressor cell induction in vitro. II. Cellular requirements of suppressor cell induction. Eur J Immunol. 1976 Apr;6(4):302–305. doi: 10.1002/eji.1830060413. [DOI] [PubMed] [Google Scholar]
  14. Gershon R. K., Kondo K. Infectious immunological tolerance. Immunology. 1971 Dec;21(6):903–914. [PMC free article] [PubMed] [Google Scholar]
  15. Gmelig-Meyling F., Ballieux R. E. Simplified procedure for the separation of human T and non-T cells. Vox Sang. 1977 Jul;33(1):5–8. doi: 10.1111/j.1423-0410.1977.tb02229.x. [DOI] [PubMed] [Google Scholar]
  16. Herzenberg L. A., Okumura K., Metzler C. M. Regulation of immunoglobulin and antibody production by allotype suppressor T cells in mice. Transplant Rev. 1975;27:57–83. doi: 10.1111/j.1600-065x.1975.tb00184.x. [DOI] [PubMed] [Google Scholar]
  17. Jandinski J., Cantor H., Tadakuma T., Peavy D. L., Pierce C. W. Separation of helper T cells from suppressor T cells expressing different Ly components. I. Polyclonal activation: suppressor and helper activities are inherent properties of distinct T-cell subclasses. J Exp Med. 1976 Jun 1;143(6):1382–1390. doi: 10.1084/jem.143.6.1382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  19. Moretta L., Ferrarini M., Mingari M. C., Moretta A., Webb S. R. Subpopulations of human T cells identified by receptors for immunoglobulins and mitogen responsiveness. J Immunol. 1976 Dec;117(6):2171–2174. [PubMed] [Google Scholar]
  20. Moretta L., Webb S. R., Grossi C. E., Lydyard P. M., Cooper M. D. Functional analysis of two human T-cell subpopulations: help and suppression of B-cell responses by T cells bearing receptors for IgM or IgG. J Exp Med. 1977 Jul 1;146(1):184–200. doi: 10.1084/jem.146.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schwartz S. A., Shou L., Good R. A., Choi Y. S. Suppression of immunoglobulin synthesis and secretion by peripheral blood lymphocytes from normal donors. Proc Natl Acad Sci U S A. 1977 May;74(5):2099–2103. doi: 10.1073/pnas.74.5.2099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shou L., Schwartz S. A., Good R. A. Suppressor cell activity after concanavalin A treatment of lymphocytes from normal donors. J Exp Med. 1976 May 1;143(5):1100–1110. doi: 10.1084/jem.143.5.1100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Strelkauskas A. J., Schauf V., Wilson B. S., Chess L., Schlossman S. F. Isolation and characterization of naturally occurring subclasses of human peripheral blood T cells with regulatory functions. J Immunol. 1978 Apr;120(4):1278–1282. [PubMed] [Google Scholar]
  24. Yam L. T., Li C. Y., Crosby W. H. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol. 1971 Mar;55(3):283–290. doi: 10.1093/ajcp/55.3.283. [DOI] [PubMed] [Google Scholar]
  25. Zembala M., Asherson G. L. Depression of the T cell phenomenon of contact sensitivity by T cells from unresponsive mice. Nature. 1973 Jul 27;244(5413):227–228. doi: 10.1038/244227a0. [DOI] [PubMed] [Google Scholar]
  26. de Vries J. E., Caviles A. P., Jr, Bont W. S., Mendelsohn J. The role of monocytes in human lymphocyte activation by mitogens. J Immunol. 1979 Mar;122(3):1099–1107. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES