Skip to main content
Frontiers in Plant Science logoLink to Frontiers in Plant Science
. 2012 Nov 1;3:234. doi: 10.3389/fpls.2012.00234

Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts

Salma Balazadeh 1,, Nils Jaspert 2,, Muhammad Arif 1, Bernd Mueller-Roeber 1, Veronica G Maurino 2,*
PMCID: PMC3485569  PMID: 23125844

Abstract

Glycolate oxidase (GO) catalyses the oxidation of glycolate to glyoxylate, thereby consuming O2 and producing H2O2. In this work, Arabidopsis thaliana plants expressing GO in the chloroplasts (GO plants) were used to assess the expressional behavior of reactive oxygen species (ROS)-responsive genes and transcription factors (TFs) after metabolic induction of H2O2 formation in chloroplasts. In this organelle, GO uses the glycolate derived from the oxygenase activity of RubisCO. Here, to identify genes responding to an abrupt production of H2O2 in chloroplasts we used quantitative real-time PCR (qRT-PCR) to test the expression of 187 ROS-responsive genes and 1880 TFs after transferring GO and wild-type (WT) plants grown at high CO2 levels to ambient CO2 concentration. Our data revealed coordinated expression changes of genes of specific functional networks 0.5 h after metabolic induction of H2O2 production in GO plants, including the induction of indole glucosinolate and camalexin biosynthesis genes. Comparative analysis using available microarray data suggests that signals for the induction of these genes through H2O2 may originate in the chloroplast. The TF profiling indicated an up-regulation in GO plants of a group of genes involved in the regulation of proanthocyanidin and anthocyanin biosynthesis. Moreover, the upregulation of expression of TF and TF-interacting proteins affecting development (e.g., cell division, stem branching, flowering time, flower development) would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H2O2.

Keywords: glycolate oxidase, H2O2, ROS-responsive genes, transcription factors

Introduction

Photosynthetic organisms are confronted with reactive oxygen species (ROS), such as singlet oxygen (1O2), the superoxide anion radical (O2), the hydroxyl radical (OH·), and hydrogen peroxide (H2O2), which may cause oxidative stress and damage to important biological molecules (Apel and Hirt, 2004; Møller et al., 2007). Plants in their natural environments are often exposed to sudden increases in light intensity, which results in the absorption of excitation energy in excess of that required for metabolism. In chloroplasts, when absorbed energy is in excess at photosystem II (PSII), O2 is produced during the Mehler reaction by Fd-NADPH oxidase at PSI and is dismutated by superoxide dismutase (SOD) to H2O2 (Ort and Baker, 2002; Asada, 2006). The photorespiratory pathway consumes photosynthetic reducing energy and produces H2O2 in the peroxisomes through the action of glycolate oxidase (GO) (Maurino and Peterhansel, 2010). H2O2 is also produced during a variety of different reactions under stress conditions, often through the detoxification of 1O2 and O2. The generated H2O2 is scavenged by different antioxidant/enzyme reactions: the ascorbate and glutathione cycles, ascorbate peroxidase (APX), catalase, and peroxiredoxin (PRX) (Tripathi et al., 2009).

ROS generated in the chloroplast have been implicated as triggers of signaling pathways that influence expression of nuclear-encoded genes, which may initiate responses such as cell death or acclimation depending on the degree of the stress (Karpinski et al., 1999; Fryer et al., 2003; Op den Camp et al., 2003; Danon et al., 2005). H2O2 can take part in signaling acting as messenger either directly (e.g., by reversibly modifying critical thiol groups in target proteins; Neill et al., 2002) or by using an oxidized product as a secondary messenger (Møller et al., 2007). The H2O2-scavenging enzymes APX and dehydroascorbate reductase (DHAR) may act as highly efficient initiators of oxidative signaling by generating transient bursts of reduced glutathione. This in consequence triggers glutaredoxin-mediated protein oxidation (Neill et al., 2002). Crosstalk between redox pools of different cellular compartments, possibly transmitted by a redox shift in cellular components, has also been suggested to be important for control of the expression of nuclear genes (Baier and Dietz, 2005; Leister, 2005). A generalized model of H2O2 signal transduction pathways suggests that H2O2 may also directly oxidize transcription factors (TFs) in either the cytosol or the nucleus. Alternatively, H2O2-mediated activation of a signaling protein such as a protein kinase may activate TFs (Mittler et al., 2004; Miao et al., 2007). TFs would interact with cognate H2O2-response elements in target gene promoters thereby modulating gene expression (Foyer and Noctor, 2005). Recently, Møller and Sweetlove (2010) put forward the hypothesis that H2O2 itself is unlikely to be the signaling molecule that selectively regulates nuclear-encoded chloroplastic genes but rather that oxidized peptides deriving from proteolysis of oxidized proteins would act as second messengers during retrograde ROS signaling. On the other hand, using spin trapping EPR spectroscopy in addition to chemical assays (employing Amplex Red reagent), Mubarakshina et al. (2010) showed that 5% of the H2O2 produced inside chloroplasts at high light intensities can actually be detected outside the organelles. This process may involve the pass of H2O2 through aquaporins (Bienert et al., 2007) and might be sufficient to trigger signaling processes outside the chloroplasts.

Desikan et al. (2001) showed that approximately 1% of the transcriptome was altered in H2O2-treated Arabidopsis thaliana (A. thaliana) cell cultures. Although H2O2-responsive promoters have been identified (Desikan et al., 2001), specific H2O2-regulatory DNA sequences and their cognate TFs have not been isolated and characterized. In more recent studies genes involved in H2O2 signal transduction have been identified or proposed, including mitogen-activated protein kinases (MAPKs), various TFs of e.g., the NAC, ZAT, and WRKY families, miRNAs and others (Van Breusegem et al., 2008; Li et al., 2011; Petrov and Van Breusegem, 2012). Moreover, using genome-wide analysis of catalase deficient A. thaliana, H2O2 was inferred to regulate the expression of genes encoding specific small heat shock proteins, several TFs and candidate regulatory proteins (Vandenabeele et al., 2004; Vanderauwera et al., 2005).

To date, it is not known to which extent the chemical specificity of the ROS and the cellular compartment of their release may contribute to the multiplicity of responses that occur in plants. A major challenge is to dissect the genetic networks that control ROS signaling and to assess specific and common responses toward different types of ROS signals. To this end, the molecular, biochemical and physiological responses of A. thaliana to elevated in planta levels of H2O2 were and are being investigated in various types of model systems including mutants altered in the ROS scavenging machinery (Maurino and Flügge, 2008). However, the analysis of dynamic physiological processes using (knock-out) mutants may not always be straightforward, especially when compensatory cellular mechanisms are induced. With respect to ROS-related mutants, changing the balance of scavenging enzymes may induce compensatory mechanisms such that signaling and oxidative damage effects may not be easily separated. Moreover, invasive experimental setups like the application of oxidative stress-causing agents may induce a non-specific oxidative stress that acts throughout the cell and triggers additional responses that may complicate the analysis of ROS signal transduction pathways (Maurino and Flügge, 2008). We have recently developed a tool to functionally dissect the action of plastid-generated H2O2, using plants overexpressing GO in plastids (GO plants; Fahnenstich et al., 2008). During photosynthesis, the oxygenase activity of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) produces glycolate 2-phosphate within the chloroplasts, which is then dephosphorylated to glycolate by phosphoglycolate phosphatase (Maurino and Peterhansel, 2010). In GO plants, glycolate is oxidized to glyoxylate by the plastidic GO, with the parallel production of H2O2. When growing under moderate photon fluxes and ambient CO2 concentration (photorespiratory conditions) the GO plants remain smaller than the wild type, presenting a reduced rosette diameter and yellowish leaves due to H2O2 accumulation (Fahnenstich et al., 2008). In contrast, in non-photorespiratory conditions (e.g., at high CO2 concentration) the oxygenase activity of RubisCO is abolished and thus, the metabolic flux through GO is suppressed, allowing GO plants to grow like wild type (Fahnenstich et al., 2008). Transferring GO plants from high to ambient CO2 concentration specifically induces H2O2 formation in the chloroplasts (Fahnenstich et al., 2008). These properties permit the modulation of plastidic produced H2O2 levels by changing light intensity and/or CO2 levels (Maurino and Flügge, 2008). Moreover, H2O2 is specifically generated without a concomitant accumulation of superoxide or singlet oxygen, which are common precursors of H2O2 during ROS generation in chloroplasts. A similar experimental set-up was employed in previous studies using catalase null mutants in which the production of peroxisomal H2O2 is induced by changing the conditions of plant growth from non-photorespiratory to photorespiratory conditions (e.g., high light intensity) (Dat et al., 2000; Vandenabeele et al., 2004; Vanderauwera et al., 2005). The metabolic production of H2O2 may avoid the pleiotropic effects discussed above but it cannot be ruled out that ROS-unrelated pleiotropic reactions may occur in both approaches due to abrupt changes in CO2 level or light intensity.

In this work we attempted to identify genes strongly responding to an abrupt production of H2O2 in chloroplasts of A. thaliana. To this end we tested the expressional changes of 187 nuclear-encoded ROS-responsive genes and 1880 TFs, using quantitative real-time (qRT)-PCR (Czechowski et al., 2004; Balazadeh et al., 2008; Wu et al., 2012) upon transfer of high CO2-grown GO and wild-type (WT) plants to ambient CO2 concentration. Our data revealed a rapid and coordinated expression response of ROS-affected genes of specific functional networks in GO including an early induction of indole glucosinolate and camalexin biosynthesis genes and an up-regulation of a group of genes involved in the regulation of proanthocyanidin and anthocyanin biosynthesis. Moreover, the upregulation of expression of TF and TF-interacting proteins affecting development (e.g., cell division, stem branching, flowering time, flower development) would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H2O2.

Materials and methods

Plant material

Arabidopsis thaliana (L.) Heynh. ecotype Columbia-0 (Col-0, wild-type) constitutively expressing glycolate oxidase (GO, At3g14420) in the plastids (GO plants) under the cauliflower mosaic virus 35S promoter were generated in our previous work (Fahnenstich et al., 2008). In these plants to direct the expression of GO to the chloroplats the stromal targeting presequence from Arabidopsis thaliana phosphoglucomutase (At5g51820) was used (Fahnenstich et al., 2008). WT and GO transgenic plants were grown in pots containing 3 parts of soil (Gebr. Patzer KG, Sinntal-Jossa, Germany) and one part of vermiculite (Basalt Feuerfest, Linz, Austria) under a 16 h-light/8 h-dark regime at photosynthetically active photon flux densities (PPFD) of 75 μmol quanta m−2 s−1 at 22°C day/18°C night temperatures and a CO2 concentration of 3000 ppm. After 3 weeks of growth plants were transferred to ambient CO2 concentration (380 ppm) and the same PPFD. Whole rosettes were harvested at different time points after transfer, immediately frozen in liquid nitrogen and stored at −80°C until use for RNA isolation and H2O2 measurements.

Isolation of RNA and real-time PCR analysis

For the large-scale qRT-PCR analysis, total RNA was extracted from 100 mg leaves (fresh weight) using RNeasy Plant Mini kit (Qiagen, Valencia, USA) according to the manufacturer's protocol. DNAse I digestion was performed on 20–30 μg of total RNA using TURBO DNase Kit (Ambion, Cambridgeshire, UK) according to manufacturer's instructions. RNA integrity was checked on 1% (w/v) agarose gels and concentration measured with a Nanodrop ND-1000 spectrophotometer before and after DNAse treatment. Absence of genomic DNA was confirmed subsequently by quantitative PCR using primers that amplify an intron sequence of the gene At5g65080 (forward 5′-TTTTTTGCCCCCTTCGAATC-3′ and reverse 5′-ATCTTCCGCCACCACATTGTAC-3′). First-strand cDNA was synthesized from 8 μg to 10 μg of total RNA using RevertAid™ First Strand cDNA Synthesis Kit (Fermentas, St. Leon-Rot, Germany) following the manufacturer's protocol. The efficiency of cDNA synthesis was estimated by qRT-PCR using two different primer sets annealing to the 5′ and 3′ ends, respectively, of a control gene (At3g26650, GAPDH, glyceraldehyde-3-phosphate dehydrogenase). Primer sequences were as follows: for GAPDH3′, forward 5′-TTGGTGACAACAGGTCAAGCA-3′ and reverse 5′-AAACTTGTCGCTCAATGCAATC-3′; for GAPDH5′, forward 5′-TCTCGATCTCAATTTCGCAAAA-3′ and reverse 5′-CGAAACCGTTGATTCCGATTC-3′. Transcript levels of each gene were normalized to ACTIN2 (At3g18780) transcript abundance (forward 5′-TCCCTCAGCACATTCCAGCAGAT-3′ and reverse 5′-AACGATTCCTGGACCTGCCTCATC-3′). A total of 187 ROS-responsive genes (Wu et al., 2012) and 1880 TFs (Czechowski et al., 2004; Balazadeh et al., 2008) were analyzed by qRT-PCR as previously described (Caldana et al., 2007; Balazadeh et al., 2008). PCR reactions were run on an ABI PRISM 7900HT sequence detection system (Applied Biosystems, Darmstadt, Germany), and amplification products were visualized using SYBR Green (Applied Biosystems).

H2O2 measurements

Levels of H2O2 were determined using the Amplex® Red Technology (Life Technologies, Darmstadt, Germany) following the manufacturer's instructions. Amplex Red (N-acetyl-3,7-dihydroxyphenoxazine) reacts with H2O2 in the presence of horseradish peroxidase and forms the fluorescent product resorufin. For the determinations, 100 mg leaves (fresh weight) were ground in liquid nitrogen into a fine powder and resuspended with 0.15 mL extraction buffer prepared as indicated by the manufacturer. This suspension was centrifuged at 4°C at 13,000 rpm for 15 min. Five μL of the supernatant, 45 μL distilled water and 50 μL of Amplex® Red solution were added to a microtitre plate. After 30 min incubation in the dark fluorescence was measured by excitation at 560 nm and emission reads at 590 nm. A calibration curve was established with known H2O2 concentrations.

Gene expression network analysis

The two genes that were most strongly induced under photorespiratory conditions in GO plants at the 0.5 and 6 h time points (At3g02840 and At1g17180, respectively) were used as baits to identify globally coexpressed genes using the ATTED-II database (http://atted.jp), which allows evaluating genes that are coexpressed under five experimental conditions (tissue, abiotic stress, biotic stress, hormones, and light conditions) (Obayashi et al., 2009).

Results and discussion

Induction of H2O2 formation in GO plants

The production of H2O2 in leaves of plants overexpressing GO in the plastids (Fahnenstich et al., 2008) was analyzed after activation of photorespiration by transferring high CO2-grown plants to ambient-CO2 conditions. As shown in Table 1, higher levels of H2O2 were determined in GO than in WT plants at 0.5 and 4 h after transfer while GO and WT plants maintained under non-photorespiratory conditions (3000 ppm CO2) showed similar H2O2 levels at both time points (Table 1). Note, that as the measurements were performed using whole-leaf extracts the expected differences in chloroplastic H2O2 levels between GO and WT plants under photorespiratory condition may be higher than determined here.

Table 1.

Levels of H2O2 measured in whole rosettes (μmol/g FW) after shifting high CO2-grown wild-type and GO plants to ambient CO2 concentration for 0.5 and 4 h.

0.5 h 4 h
High CO2 Ambient CO2 High CO2 Ambient CO2
WT 2.4 ± 0.2 2.3 ± 0.2 2.5 ± 0.4 2.7 ± 0.1
GO 2.5 ± 0.3 3.0 ± 0.3 2.6 ± 0.2 3.4 ± 0.0

Samples from control plants maintained in high CO2 were processed in parallel. Values indicate the mean ± SE of three independent samples and those set in bold face indicate significant differences to the corresponding wild-type value calculated by Student's t-test (P < 0.05). WT, wild type.

Expression profiling of ROS marker genes in GO and wild-type plants after the induction of H2O2 formation in chloroplasts

To study the impact of an abrupt production of H2O2 in chloroplasts on nuclear gene expression, we analyzed transcript level changes of 187 ROS-responsive genes using a previously established qRT-PCR platform (detailed in Wu et al., 2012). The genes included in the platform were chosen from published reports and our own experiments and represent four different groups that were already shown to be rapidly induced by (1) superoxide radical (O2; 18 genes), (2) singlet oxygen (1O2; 22 genes), (3) H2O2 (53 genes), or (4) different types of ROS (general ROS-responsive genes; 94 in total).

Gene expression was analyzed in whole rosettes of 3-week-old WT and GO plants at 0.5, 4, 6, and 12 h after shifting high-CO2-grown plants (non-photorespiratory condition) to ambient CO2 concentration (photorespiratory condition). Expression profiling was performed in two biological replicates and log-fold change (log2 FC) ratios of expression changes were calculated for GO and WT plants by comparing gene expression levels before and after the CO2 concentration shift. A total of 131 genes were expressed in all examined samples (Table A1 in Appendix). The remaining 56 genes did not yield detectable PCR amplicons, indicating no or marginal expression under our experimental conditions.

Considering a 3-fold expression difference cut-off, 120 genes displayed differential expression in GO and/or WT plants upon transfer from high to ambient CO2 concentration; the vast majority of the affected genes (116 in total) were up-regulated, and only four genes were down-regulated (Figure 1, Table A1 in Appendix). Most noticeably, expression of 58 genes was induced in GO plants already within 0.5 h after the transfer to ambient CO2 condition, whilst only a single gene was induced in the wild type at the same time point (Figure 1). Importantly, however, many genes showed also high expression in the wild type at later time points after the CO2 concentration shift, but the expressional changes were in most cases more pronounced in GO than WT plants (Figure 1, and section “Early Induction of Indole Glucosinolate and Camalexin Biosynthesis Genes in GO Plants”). Thus, our data indicate that similar sets of ROS-responsive genes responded to the CO2 shift in GO and WT plants; however, the dynamics of the transcriptional responses were clearly different in the two types of plants, being faster and more prominent in the GO plants.

Figure 1.

Figure 1

Venn diagram of the number of ROS-responsive genes differentially expressed in wild-type and GO plants at different time points (0.5, 4, 6, and 12 h) after the transfer of plants grown at high CO2 concentration (3000 ppm) to ambient CO2 concentration (380 ppm).

Early induction of indole glucosinolate and camalexin biosynthesis genes in GO plants

To identify transcripts responsive to metabolically produced H2O2 we focused our analysis on the 0.5- and 6-h time points. Genes were considered differentially expressed when the fold change was more than 3-fold (log2 ≥ 1.56).

At 0.5 h after shifting plants to ambient CO2 concentration, 58 of the 131 expressed genes were induced in GO plants by more than 3-fold, whilst in the wild type the expression change was less than 3-fold, suggesting that these genes participate in early signaling steps triggered by the production of H2O2 under photorespiratory conditions (Table 2). After 6 h, seven of these genes showed WT levels of expression (below 3-fold), while 29 were further overexpressed only in GO (Table 2). Although at 6 h after transfer to ambient CO2 the expression fold-change (FC) of the remaining 22 genes was higher than 3 in both, GO and WT plants, the expression change between GO and WT (FCGO/FCWT) was higher than 2 for 16 of these genes (Table 2), indicating that their higher expression in GO plants was triggered by the elevated levels of H2O2.

Table 2.

ROS-responsive genes (58 in total) the expression of which was enhanced by more than 3-fold in GO plants 0.5 h after shifting plants grown at high CO2 concentration (3000 ppm) to ambient CO2 concentration (380 ppm).

AGI 0.5 h 6 h Annotation
FCWT FCGO FCGO/FCWT FCWT FCGO FCGO/FCWT
UP-REGULATED IN GO AT 0.5 H
At1g69890 1.3 15.9 12.0 1.2 2.2 1.8 Protein of unknown function
At2g40000* 0.9 10.2 11.2 1.6 2.1 1.3 Ortholog of sugar beet HS1 PRO-1 2 (HSPRO2)
At2g18210 1.0 8.4 8.2 1.1 2.9 2.6 Protein of unknown function
At1g18570 1.2 6.8 5.7 0.7 2.5 3.6 Myb-type transcription factor (HIG1/MYB51)
At1g21100 1.6 6.9 4.2 0.7 1.5 2.2 Indole glucosinolate O-methyltransferase (IGMT1)
At5g64310 1.2 3.8 3.1 3.1 1.1 0.4 Arabinogalactan protein (AGP1C) of unknown function
At5g28630 1.4 4.0 2.9 0.3 0.4 1.5 Protein of unknown function
UP-REGULATED IN GO AT 0.5 H AND 6 H
CHANGE IN GENE EXPRESSION IN WT AT 6 H < 3
At3g02840* 1.1 79.3 71.2 2.9 65.4 22.8 Putative U-box-type E3 ubiquitin ligase
At2g37430* 0.9 53.3 62.7 1.9 190.8 100.9 C2H2 and C2HC zinc fingers superfamily protein (ZAT11)
At1g05575* 1.5 45.6 29.9 0.6 4.3 6.8 Protein of unknown function
At2g38470 1.4 31.5 22.3 1.8 7.5 4.3 WRKY-type transcription factor (WRKY33)
At4g17490 1.5 21.5 14.7 1.3 6.9 5.2 Ethylene-responsive element binding factor (ERF6)
At5g47230 1.3 17.4 13.8 1.5 4.4 3.0 Ethylene-responsive element binding factor (ERF5)
At1g66060 1.3 17.5 13.2 2.7 5.1 1.9 Protein of unknown function
At2g32030 1.3 16.4 12.2 1.9 24.5 12.9 Putative GNAT-type N-acetyltransferase
At2g26530* 1.2 13.3 10.7 2.1 5.4 2.5 Protein of unknown function; AR781
At1g21120 1.0 9.9 10.3 0.7 15.9 22.1 Indole glucosinolate O-methyltransferase (IGMT2)
At1g35210 1.1 11.2 10.2 2.9 14.4 4.9 Protein of unknown function
At3g55980* 1.4 14.3 10.1 1.2 4.0 3.3 Salt-inducible zinc finger 1, SZF1 (C3H47)
At2g33710 1.0 7.5 7.7 0.8 12.6 15.0 Putative ERF-type transcription factor
At2g25735* 1.8 10.8 5.9 0.6 3.2 5.7 Protein of unknown function
At5g54490 1.5 7.8 5.3 1.5 4.1 2.8 PBP1, Pinoid Binding Protein 1
At1g19020* 1.8 9.3 5.1 1.9 27.7 14.5 Protein of unknown function
At5g51190 1.4 6.8 4.9 1.8 5.0 2.7 Putative ERF-type transcription factor
At3g02800* 1.1 5.0 4.5 1.2 4.1 3.4 Tyrosine phosphatase (ATPFA-DSP3)
At5g64905 1.4 6.0 4.4 2.1 33.0 16.0 Putative peptide elicitor Pep3 precursor protein (ProPep3)
At1g76600* 1.4 5.8 4.3 1.7 11.0 6.3 Protein of unknown function
At3g23230 2.2 9.4 4.2 2.3 17.1 7.5 Putative ERF-type transcription factor (ERF98)
At1g59590 1.3 5.2 4.1 1.4 5.2 3.8 Zinc finger protein (ZCF37) of unknown function
At4g18880* 1.6 6.5 4.0 1.9 4.6 2.4 Heat stress-type transcription factor (HsfA4a/HSF21)
At2g41640 1.1 4.0 3.7 2.2 6.0 2.7 Protein of unknown function
At1g28190* 1.1 3.9 3.5 2.4 5.6 2.3 Protein of unknown function
At5g57220 2.8 9.1 3.3 1.3 6.9 5.2 Cytochrome P450 monooxygenase (CYP81F2)
At1g26380* 1.2 3.4 3.0 2.1 39.0 18.9 UDP-N-acetylmuramate dehydrogenase of unknown function
At2g31945 1.3 3.5 2.7 2.3 5.1 2.2 Protein of unknown function
At4g11280 1.5 3.0 2.0 1.4 5.9 4.3 1-Aminocyclopropane-1-carboxylate synthase (ACS6)
CHANGE IN GENE EXPRESSION IN WT AT 6 H > 3
At1g80840 1.1 38.0 35.4 5.5 56.4 10.3 WRKY-type transcription factor (WRKY40)
At5g04340* 0.8 27.5 32.6 7.3 8.6 1.2 C2H2-zinc-finger-TF (C1-2iD-04) of unknown function
At2g22880 1.7 50.8 29.4 6.2 28.1 4.5 Protein of unknown function
At1g27730 1.1 30.1 26.8 6.0 28.0 4.7 C2H2-zinc-finger-TF (ZAT10/STZ)
At5g27420 1.2 32.7 26.3 3.0 15.0 5.0 Putative ubiquitin ligase, ATL subfamily (ATL31)
At1g61340 1.5 24.3 16.3 6.6 10.5 1.6 ATFBS1. F-Box stress induced 1 of unknown function
At5g59820 1.0 14.3 14.1 4.6 61.7 13.5 C2H2-zinc-finger-TF (ZAT12)
At5g24110* 1.0 13.3 13.8 3.3 91.2 28.0 WRKY-type transcription factor (WRKY30)
At4g24570 1.4 18.8 13.6 3.6 3.3 0.9 Dicarboxylate carrier (DIC2)
At3g10930 1.7 19.0 11.5 8.5 38.8 4.6 Protein of unknown function
At3g25250* 1.5 17.3 11.4 11.1 153.6 13.8 Putative protein kinase (AGC2/OXI1)
At4g39670* 1.3 14.3 10.7 31.7 184.9 5.8 Sphingosine transfer protein; accelerated death 11 (ACD11)
At1g77450* 0.8 7.3 9.5 5.6 6.9 1.2 NAC-type transcription factor (ANAC032)
At1g72520 1.7 15.7 9.3 4.8 9.7 2.0 Lipoxygenase (LOX4)
At3g48650 1.9 14.8 7.6 6.2 7.4 1.2 14a-related protein of unknown function
At4g21390 1.8 13.0 7.0 6.5 28.9 4.4 Putative S-domain-type receptor protein kinase
At5g63790* 0.8 5.4 7.0 3.1 11.1 3.6 NAC-type transcription factor (ANAC102)
At4g37370 1.4 7.0 5.0 2.8 67.5 24.1 Cytochrome P450 monooxygenase (CYP81D8)
At1g63720 1.5 5.0 3.2 3.1 6.1 1.9 Hydroxyproline-rich glycoprotein family protein
At2g18690 1.5 4.4 3.0 6.6 24.7 3.7 Protein of unknown function
At1g05340* 1.2 3.4 2.7 4.3 7.9 1.8 Protein of unknown function
At1g57630 1.4 3.4 2.4 20.2 36.0 1.8 Protein of unknown function

Genes are listed according to the difference of the expression change between GO and wild-type (WT) plants (FCGO/FCWT) at 0.5 h. FCGO/FCWT values higher than 2 are shown in bold face. AGI: gene identification number given by the Arabidopsis Genome Initiative. Genes also induced in catalase loss-of function mutants are highlighted with an asterisk (

*

) (Inzé et al., 2012). Genes included in the same gene coexpression network of At3g02840 (putative U-box-type E3 ubiquitin ligase) are highlighted in bold face (http://atted.jp; Obayashi et al., 2009). The gene annotation was retrieved from TAIR (http://arabidopsis.org/index.jsp).

Later responding genes, which were affected only after 6 h under photorespiratory conditions, were also identified. From the 23 genes that showed an expression change of above 3-fold in GO, 13 were only induced in GO, while 10 genes were induced in both, GO and WT. The FC ratio in GO and WT (FCGO/FCWT) was above 2 for the 10 genes (Table 3), indicating that their expression in GO plants is controlled by the higher levels of H2O2, similar to the early-responsive genes.

Table 3.

ROS-responsive genes (23 in total) the expression of which was enhanced more than 3-fold in GO plants 6 h after shifting plants grown at high CO2 concentration to ambient CO2 concentration.

AGI 0.5 h 6 h Annotation
FCWT FCGO FCGO/FCWT FCWT FCGO FCGO/FCWT
UP-REGULATED IN GO AT 6 H
CHANGE IN GENE EXPRESSION IN WT < 3
At1g26420 1.5 1.6 1.1 2.4 17.6 7.3 Putative reticuline dehydrogenase
At2g15480 1.0 2.8 2.8 1.2 7.2 6.0 UDP-dependent glycosyl transferase (UGT73B5)
At1g10040 1.2 1.8 1.5 2.1 10.4 5.0 Putative hydrolase
At2g29490 0.7 1.9 2.8 2.3 10.4 4.5 Tau glutathione S-transferase (GSTU1)
At5g46080 1.1 1.9 1.8 1.2 3.7 3.1 Putative protein kinase
At1g80820 1.2 1.5 1.3 2.5 7.8 3.1 Cinnamoyl CoA reductase, involved in lignin biosynthesis
At3g09410 1.2 0.8 0.7 1.2 3.2 2.7 Putative pectin acetylesterase
At2g29500* 1.0 1.1 1.2 1.5 3.8 2.5 HSP20-type protein (HSP17.6B-CI); unknown function
At4g22530* 1.3 0.8 0.7 2.4 5.9 2.4 Putative methyltransferase
At4g15975 1.7 1.3 0.7 1.6 3.7 2.4 Putative ubiquitin ligase (RRE4/ATL17)
At2g38340 1.0 0.7 0.7 2.7 6.1 2.2 Putative AP2-type transcription factor (DREB2E)
At3g13790 1.3 1.3 1.1 2.5 5.0 2.0 Putative cell wall invertase (CwINV1)
At1g76070 1.2 2.6 2.2 1.6 3.3 2.0 Protein of unknown function
CHANGE IN GENE EXPRESSION IN WT > 3
At1g17180 0.6 0.9 1.4 7.5 104.0 13.8 Tau glutathione S-transferase (GSTU25)
At1g15520 1.2 0.8 0.7 12.4 111.9 9.0 ABC transporter (ABCG40/PDR12)
At1g17170 1.0 1.3 1.4 5.7 40.4 7.0 Tau glutathione S-transferase (GSTU24)
At1g74360 1.0 2.2 2.2 4.2 14.2 3.4 Putative LRR-type receptor protein kinase
At2g38250* 1.2 1.7 1.4 4.4 13.7 3.1 Putative trihelix-type transcription factor
At5g51060 1.3 1.0 0.7 14.4 44.0 3.1 Respiratory burst oxidase homolog (AtRBOHC/RHD2)
At5g20230 1.5 2.8 1.8 9.9 28.3 2.9 Senescence associated gene (BCB/SAG14)
At2g41380 1.1 1.2 1.1 9.6 21.2 2.2 Putative S-adenosyl-L-methionine-dependent methyltransferase
At1g13340 1.0 2.1 2.0 3.4 6.8 2.0 Protein of unknown function
At5g48850 1.1 0.8 0.7 3.3 7.4 2.2 Protein of unknown function (ATSDI1)

Genes are listed according to the difference of the expression change between GO and wild-type (WT) plants (FCGO/FCWT) at 6 h. FCGO/FCWT values higher than 2 are shown in bold face. AGI: gene identification number given by the Arabidopsis Genome Initiative. Genes also induced in catalase loss-of function mutants are highlighted with an asterisk (

*

) (Inzé et al., 2012). Genes included in the same gene coexpression network of At1g17180 (GSTU25) are highlighted in bold face (http://atted.jp; Obayashi et al., 2009). The gene annotation was retrieved from TAIR (http://arabidopsis.org/index.jsp).

The most highly up-regulated gene in GO plants at 0.5 h after induction of H2O2 production was At3g02840 (encoding a putative U-box-type E3 ubiquitin ligase, known to respond immediately-early to fungal elicitation) (Table 2). We used the ATTED-II database (http://atted.jp; Obayashi et al., 2009) to discover genes coexpressed with At3g02840 and observed that 45 of the 58 genes induced at 0.5 h after induction of H2O2 production cluster together (Table 2), indicating that metabolically produced H2O2 in GO plants induces the coordinate expression of functionally related genes. A similar analysis using the most highly expressed gene at 6 h after induction of H2O2 production (At1g17180, encoding glutathione S-transferase Tau 25) indicated that another group of eight genes are coordinately expressed in GO plants at this later time point (Table 3).

Recently, Inzé et al. (2012) listed the 85 most strongly H2O2-responsive genes in catalase loss-of-function mutants shifted from low- to high-light conditions, where H2O2 is produced in peroxisomes by the action of photorespiratory GOs. Interestingly, 23 of the 81 genes, which changed their expression in the GO plants were also differentially expressed in catalase loss-of-function mutants (Tables 2 and 3), indicating that they respond to enhanced levels of H2O2 independent of the site of its generation; the remaining genes may then represent candidates preferentially responsive to H2O2 produced in chloroplasts. Many of the genes up-regulated in GO plants encode proteins or TFs of currently unknown specific functions. Interestingly, however, several of the early-responsive genes are involved in tryptophan-derived biosynthesis of the phytoanticipins camalexin and indole glucosinolates, i.e., secondary metabolites that have antifungal and insect-deterring functions (Kliebenstein et al., 2001; Bednarek et al., 2009). These genes encode (1) the transcription factor WRKY33 (At2g38470), which is involved in controlling camalexin biosynthesis (Birkenbihl et al., 2012); (2) the Myb-type transcription factor HIG1/MYB51 (At1g18570) involved in the positive regulation of indole glucosinolate biosynthesis by activating several target genes (Gigolashvili et al., 2007); (3) the O-methyltransferases IGMT1 (At1g21100) and IGMT2 (At1g21120), which catalyze the transfer of a methyl group to the hydroxy indole glucosinolate hydroxyindol-3-ylmethylglucosinolate (4 and 1OH-I3M, respectively) to form methoxyindol-3-ylmethylglucosinolate (4 and 1MO-I3M, respectively) (Pfalz et al., 2011); and (4) cytochrome P450 monooxygenase CYP81F2 (At5g57220), that is essential for the pathogen-induced accumulation of 4-methoxyindol-3-ylmethylglucosinolate (4MI3G) (Bednarek et al., 2009). Our data thus show the early induction of indole glucosinolate and camalexin biosynthesis genes in GO plants after metabolic formation of H2O2 through the activation of genes encoding enzymes involved in intermediate metabolite conversions and of TFs that act on several target genes of these biosynthetic pathways.

Transcription factor profiling

To understand the potential effects of overexpression of GO in chloroplasts on the nuclear transcriptional program, we next broadened our analysis by testing the expression of 1880 TFs using a highly sensitive quantitative real-time PCR (qRT-PCR) platform (Czechowski et al., 2004; Balazadeh et al., 2008). Considering the data obtained from the profiling of the ROS-responsive genes, we analyzed the expression at 0.5 h after induction of H2O2 production to capture the early-responsive TFs. Expression profiling was performed in two biological replicates and log-fold change (log2 FC) ratios of expression changes were calculated for GO and WT plants by comparing gene expression levels before and after the transfer of plants grown at high CO2 to ambient CO2.

TFs most strongly responding to H2O2 were identified by comparing their expression FC in GO and WT plants. A TF was considered differentially expressed when the FC in GO was more than 3-fold (log2 ≥ 1.56) and less than 2-fold in the wild type (log2 ≥ 1.0) (Table 4). Analysis of transcript profiles revealed that the expression of 1449 genes, representing 77% of all TF genes tested, could be detected (Table A2 in Appendix). The remaining 23% (431 of the 1880 TFs) did not yield detectable PCR amplicons, indicating no or very weak expression in the tested material.

Table 4.

Transcription factors the expression of which was enhanced by more than 3-fold in GO plants, but less than 2-fold in wild-type plants 0.5 h after shifting plants grown at high CO2 concentration to ambient CO2 concentration.

AGI 0.5 h after transfer to ambient CO2 Gene family Annotation Function FG
FCWT FCGO FCGO/FCWT
At5g19790 0.2 26.9 176.5 AP2/EREBP RAP2.11 Modulates response to low potassium 4
At5g56200 0.1 14.5 169.0 C2H2 C1-4iB-01 Unknown function 5
At5g32460 1.3 123.7 92.9 B3 B3 Unknown function 5
At4g09820 0.8 34.4 45.5 bHLH TT8 Regulation of proanthocyanidin and anthocyanin biosynthesis; affects dihydroflavonol 4-reductase gene expression. 1
At2g37430 1.9 80.4 43.3 C2H2 ZAT11 Unknown function 5
At1g48150 0.1 3.6 38.9 MADS AGL74 Unknown function 5
At2g34600 0.4 8.4 24.1 ZIM JAZ7 Jasmonate signaling; cambium regulator 3
At3g07260 0.8 19.0 22.7 FHA Unknown function 5
At1g66380 1.9 40.0 21.6 MYB MYB114 Regulates later steps of anthocyanin biosynthesis 1
At1g27730 1.8 36.3 20.5 C2H2 ZAT10/STZ Involved in plant defense responses 4
At1g56650 0.6 12.1 20.1 MYB MYB75 Involved in anthocyanin metabolism; regulates dihydroflavonol reductase expression 1
At5g37415 0.5 8.8 17.6 MADS AGL105 Unknown function 5
At3g53340 0.4 6.5 17.5 CCAAT-HAP3 NF-YB10 Unknown function 5
At4g00250 0.4 6.3 16.8 GeBP Indirect regulation of cytokinin response genes 2
At5g26930 0.7 9.6 13.5 C2C2(Zn)GATA GATA-23 Controls lateral root founder cell specification 2
At4g26930 0.4 4.6 13.0 MYB MYB97 Unknown function 5
At1g48000 1.3 13.8 11.1 MYB MYB112 Unknown function 5
At5g51190 1.9 18.5 9.9 AP2/EREBP Unknown function 5
At5g43540 0.4 3.2 8.8 C2H2 C1-1iAf-03 Unknown function 5
At3g55980 1.9 15.7 8.4 C3H SZF1 Regulates salt stress responses 4
At1g74080 0.5 4.0 8.3 MYB MYB122 Activator of the indole glucosinolate biosynthesis 4
At1g68880 0.6 5.1 8.1 bZIP bZIP8 Unknown function 5
At4g35900 1.0 7.5 8.0 bZIP bZIP14/FD-1 Required for regulation of flowering 2
At1g30135 0.8 5.9 7.6 ZIM JAZ8 Represses jasmonate-regulated growth and defense responses 3
At4g01350 0.6 4.6 7.5 CHP-rich Intracellular signal transduction, oxidation-reduction process, response to chitin 4
At1g43160 1.2 8.8 7.5 AP2/EREBP RAP2.6 Regulation of development 2
At5g26170 0.8 6.3 7.5 WRKY WRKY50 Repression of jasmonate-mediated signaling 3
At1g29280 0.8 5.5 7.2 WRKY WRKY65 Unknown function 5
At1g75540 0.8 5.2 6.8 C2C2(Zn)CO STH2 Positive regulation of photomorphogenesis 4
At2g33710 1.9 11.4 5.9 AP2/EREBP ERF112 Unknown function 5
At3g01600 0.6 3.6 5.8 NAC ANAC044 Unknown function 5
At5g27050 1.4 8.2 5.7 MADS AGL101 Unknown function 5
At5g01380 0.9 5.3 5.7 Trihelix Unknown function 5
At1g65130 1.2 6.4 5.5 C2H2 C2-1iB-03 Unknown function 5
At5g23260 1.0 5.4 5.4 MADS AGL32/TT16 Regulates proanthocyanidin biosynthesis 1
At3g11580 0.9 4.6 5.4 ABI3/VP1 AP2/B3-like Seed development 2
At3g56770 0.8 4.5 5.3 bHLH Unknown function 5
At1g65110 0.6 3.2 5.1 C2H2 C2-1iB-01 Unknown function 5
At2g47190 1.2 6.0 4.9 MYB MYB2 Inhibits cytokinin-mediated branching at late stages of development 2
At5g52260 1.0 4.7 4.8 MYB MYB19 Unknown function 5
At5g39610 1.1 5.5 4.8 NAC ANAC092/ORE1 Regulator of leaf senescence 2
At4g18880 1.6 7.4 4.6 HSF HsfA4a/HSF21 Unknown function 5
At4g37610 1.1 4.8 4.3 TAZ BTB5 Unknown function 5
At1g18960 1.3 5.4 4.3 MYB Unknown function 5
At5g02470 0.8 3.2 4.0 E2F/DP DPA Endoreduplication control 2
At5g26880 1.0 3.8 3.9 MADS AGL26 Unknown function 5
At1g68800 0.9 3.5 3.8 TCP TCP12/BRC2 Prevents axillary bud development and outgrowth 2
At5g07500 1.9 7.0 3.7 C3H C3H54 Required for heart-stage embryo formation 2
At4g01540 1.3 4.2 3.4 NAC ANAC068 Mediates cytokinin signaling during cell division 2
At5g51780 1.6 5.4 3.3 bHLH Unknown function 5
At2g42150 1.1 3.5 3.2 BD Unknown function 5
At5g13220 1.1 3.4 3.2 ZIM JAZ10/TIFY9 Jasmonate signaling repressor 3
At5g22290 1.2 3.8 3.1 NAC ANAC089 Negative regulator of floral initiation 2
At2g13150 1.0 3.1 3.1 bZIP bZIP31 Unknown function 5
At1g70700 1.1 3.3 3.0 ZIM JAZ9 Jasmonate signaling repressor 3
At5g62320 1.2 3.5 3.0 MYB MYB99 Unknown function 5
At4g39070 1.2 3.5 2.9 C2C2(Zn)CO DBB2 Unknown function 5
At2g30250 1.6 4.4 2.8 WRKY WRKY25 Involved in response to various abiotic stresses 4
At5g64810 1.7 4.8 2.8 WRKY WRKY51 Repression of jasmonate-mediated signaling 3
At3g05800 1.9 5.3 2.7 bHLH AIF1 Involved in brassinosteroid signaling 4
At3g01970 1.4 3.8 2.6 WRKY WRKY45 Unknown function 5
At1g75490 1.7 4.4 2.7 AP2/EREBP DREB2D Unknown function 5
At1g68840 1.2 3.1 2.5 AP2/EREBP RAV2/TEM2 Repressor of flowering 2
At1g79180 1.4 3.3 2.5 MYB MYB63 Activates secondary wall biosynthesis 2
At4g09460 1.7 3.6 2.2 MYB MYB8 Unknown function 5
At1g66600 1.4 3.0 2.1 WRKY WRKY63 Involved in the regulation of responses to ABA and drought stress 4
At2g43500 1.5 3.1 2.1 NIN-like Unknown function 5
At4g01520 1.8 3.7 2.0 NAC ANAC067 Unknown function 5
At1g21000 1.6 3.2 2.0 PLATZ Unknown function 5
At3g27810 1.7 3.4 2.0 MYB MYB21 Petal and stamen development 2
At5g67300 1.6 3.1 1.9 MYB MYB44 Regulates ethylene signaling 4
At2g39250 1.7 3.1 1.8 AP2/EREBP SNZ Represses flowering 2
At4g16780 1.7 3.1 1.8 HB HB2/HAT4 Involved in cell expansion and cell proliferation 2
At4g24240 1.8 3.2 1.8 WRKY WRKY7 Involved in plant defense responses 4
At4g01930 1.8 3.1 1.7 BPC/BRR Unknown function 5
At5g62020 1.8 3.1 1.7 HSF HsfB2a/HSF6 Unknown function 5
At2g43000 1.9 3.2 1.7 NAC JUB1/ANAC042 Regulates camalexin biosynthesis and longevity 4
At4g17785 1.9 3.2 1.6 MYB MYB39 Unknown function 5

Genes are listed according to the difference of the expression change between GO and wild-type (WT) plants (FCGO/FCWT). AGI: gene identification number given by the Arabidopsis Genome Initiative. A function was described for a gene when its involvement in a biological process/function was experimentally backed up as described in PubMed (www.ncbi.nlm.nih.gov/pubmed) or TAIR (http://arabidopsis.org/index.jsp). FG: functional group.

At 0.5 h after shifting plants to ambient CO2 concentration, 78 of the 1449 genes were induced by more than 3-fold in GO plants, whereas in WT plants the expression changes of the same genes were less than 2-fold (Table 4). Using published data the involvement/participation of the TFs in specific biological processes (Table 4) could be assessed, which allowed the classification of the TFs into five functional groups (FG) enriched with specific gene ontology categories (Figure 2). FG1 contains TFs involved in the regulation of proanthocyanidin and anthocyanin biosynthesis (Table 4 and Figure 2). The TFs TT8 and MYB75 affecting the gene expression of dihydroflavonol 4-reductase (Debeaujon et al., 2003) are included in this FG. FG2 contains TFs affecting developmental processes like lateral root formation (GATA23), flowering (FD1, ANAC089, TEM2 and SNZ), shoot branching (MYB2 and BRC2), senescence (ANAC092/ORE1) and cell division (ANAC068 and HAT4) (Table 4 and Figure 2). The activation of these TFs in GO plants would result in altered growth and flowering (see below and Fahnenstich et al., 2008). FG3 includes TFs and TF-interacting proteins negatively regulating jasmonate (JA) signaling (JAZ7, JAZ8, JAZ9, JAZ10, WRKY50, and WRKY51; Chico et al., 2008; Staswick, 2009; Gao et al., 2011) (Table 4 and Figure 2). JAZ proteins bind directly to the key transcription factor MYC2 and thereby prevent JA-dependent gene transcription (Chini et al., 2007; Pauwels et al., 2010). At the same time JAZ genes are rapidly induced by JA and some are MYC2-regulated. This feedback loop regulation would provide a rapid on and off switch of the pathway involving JA. Transcriptional activation of JAZ genes was found to occur in response to several biotic and abiotic challenges (Yan et al., 2007). JAZ proteins would also exert their effects on post-wound inhibition of vegetative growth in A. thaliana (Yan et al., 2007) and as repressors of necrosis and/or programmed cell death during development in tobacco (Oh et al., 2012). In GO plants, the action of JAZ genes together with those of FG2 would impact growth and reproductive capacity, resulting in altered development under conditions that promote the formation of H2O2. FG4 includes TFs with diverse functions in plant defense and signaling, e.g., activators of tryptophan-derived biosynthesis of camalexin (JUB1/ANAC042) and indole glucosinolates (MYB122), as well as regulators of photomorphogenesis (STH2) (Table 4 and Figure 2). The early activation of camalexin and indole glucosinolate biosynthesis was also observed in the analysis performed with the ROS-responsive gene platform (Table 1). Finally, FG5 includes TFs with currently unknown functions (Table 4 and Figure 2).

Figure 2.

Figure 2

Pie chart representation of the five functional groups (FG) of early H2O2-responsive TFs in GO plants. FG5 includes genes for which a distinct biological function has not been reported yet.

The analysis of the transcript profiles at 0.5 h after induction of H2O2 production in GO plants (Table A2 in Appendix) also revealed a group of 13 genes that are down-regulated in GO relative to WT plants (Table 5). The function of five of these genes is currently unknown, but interestingly, the remaining eight genes positively control developmental processes. The down-regulation of expression of these TFs in GO plants together with the up-regulation of expression of TFs negatively affecting development (see FG2, Table 3) would act in concert to arrest growth and especially to delay the transition from the vegetative to the reproductive phase. Consistently, our previous results showed that GO plants growing under photorespiratory conditions are smaller than WT plants, presenting a reduced rosette diameter and a delay in flowering time (Fahnenstich et al., 2008).

Table 5.

Transcription factors the expression of which was reduced by more than 3-fold in GO plants 0.5 h after shifting plants grown at high CO2 concentration to ambient CO2 concentration.

AGI 0.5 h after transfer to ambient CO2 Gene family Annotation Function
FCWT FCGO FCWT/FCGO
At3g02310 47.1 0.12 380.8 MADS SEP2/AGL4 Flower and ovule development
At3g13850 2.0 0.02 129.5 AS2 (LOB) I ASL30/LBD22 Unknown function
At4g00260 21.6 0.23 92.1 B3 MEE45 Maternal effect embryo arrest 45
At4g27330 2.4 0.03 78.6 NZZ NZZ/SPL Controls stamen identity
At1g54760 11.6 0.31 37.6 MADS AGL85 Unknown function
At3g60460 4.6 0.26 17.9 MYB DUO1 Plays essential role in sperm cell specification
At2g45650 3.4 0.20 17.3 MADS AGL6/RSB1 Involved in axillary bud formation; control of flowering time and lateral organ development
At5g26950 2.0 0.17 12.2 MADS AGL93 Unknown function
At3g15170 1.9 0.16 11.9 NAC ANAC054/CUC1 Shoot apical meristem formation and auxin-mediated lateral root formation; formation of organ boundary
At5g58280 0.8 0.15 5.3 B3 Unknown function
At5g15800 1.0 0.21 5.0 MADS SEP1/AGL2 Involved in flower and ovule development
At3g56660 1.3 0.26 5.0 bZIP bZIP49 Unknown function
At5g23000 0.6 0.18 3.3 MYB MYB37/RAX1 Regulates axillary meristem formation; earliest spatial marker for future axillary meristems

Genes are listed according to the difference of the expression change between wild-type (WT) and GO plants (FCWT/FCGO). A function was described for a gene when its involvement in a biological process/function was experimentally backed up as described in PubMed (www.ncbi.nlm.nih.gov/pubmed) or TAIR (http://arabidopsis.org/index.jsp).

Concluding remarks

The metabolic induction of H2O2 formation in chloroplasts of GO plants under photorespiratory conditions triggered a faster and more prominent transcriptional response of ROS-responsive genes in these plants than in wild type. The changes of the transcriptional activities observed in GO plants early after induction of H2O2 production in chloroplasts suggest the establishment of responses that resemble those occurring at early times after wounding or herbivore attack, where H2O2 is also produced (Orozco-Cardenas and Ryan, 1999). These responses include (1) the retardation of development, which in part would be linked to JA signaling, and (2) the production of the phytoanticipins indole glucosinolates and camalexin. As in the case of herbivore attack, the retardation of development such as reductions in growth and reproduction observed in GO plants could be regarded as a strategy to allow more resource allocation to support defense and tolerance responses (Zavala and Baldwin, 2006). The data also suggest that signals for the early induction of indole glucosinolate and camalexin biosynthesis genes in GO plants through H2O2 may originate in chloroplasts as these genes showed no modified expression in catalase loss-of-function mutants (Inzé et al., 2012).

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

Financial support was provided by the Deutsche Forschungsgemeinschaft (DFG) through grant MA 2379/11-1 to Veronica G. Maurino, and through grant MU 1199/14-1 (FOR 948) to Bernd Mueller-Roeber.

Appendix

Table A1.

Expression profile of 131 ROS-responsive genes in wild-type (WT) and GO plants after transferring seedlings to ambient CO2 concentration.

AGI log2 FCh
0.5h WT 0.5h GO 4h WT 4h GO 6h WT 6h GO 12h WT 12h GO
At1g02450 1.64 0.53 2.04 1.21 4.35 2.28 4.78 2.50
At1g05340 0.31 1.77 1.81 2.40 2.10 2.98 6.07 4.71
At1g05575 0.61 5.51 −1.36 1.90 −0.65 2.11 3.67 2.46
At1g10040 0.21 0.85 1.27 1.05 1.06 3.38 4.88 3.04
At1g13340 0.07 1.07 1.64 1.37 1.78 2.77 3.92 3.92
At1g14040 0.20 0.05 0.37 −0.24 0.42 0.28 1.54 0.51
At1g14200 −0.37 −0.58 −0.20 −1.26 0.38 0.52 1.92 1.20
At1g15520 0.22 −0.24 4.12 3.10 3.64 6.81 8.06 5.72
At1g16030 0.34 −0.29 0.11 0.71 0.18 0.13 0.95 0.22
At1g17170 −0.06 0.39 2.44 2.31 2.52 5.34 8.73 7.58
At1g17180 −0.65 −0.18 2.77 2.79 2.91 6.70 8.30 6.36
At1g18570 0.26 2.76 −1.48 −0.37 −0.53 1.33 3.99 2.48
At1g19020 0.87 3.21 0.34 1.88 0.93 4.79 6.83 5.94
At1g21100 0.72 2.78 −1.31 0.21 −0.56 0.61 1.18 1.88
At1g21120 −0.06 3.31 0.51 1.19 −0.47 3.99 4.94 3.88
At1g22400 0.08 −0.51 −0.53 −0.80 0.23 0.31 2.96 2.64
At1g26380 0.20 1.78 0.44 1.10 1.04 5.28 6.15 5.05
At1g26420 0.62 0.69 0.20 1.21 1.26 4.14 5.88 5.17
At1g27730 0.17 4.91 2.63 3.85 2.58 4.81 4.55 4.42
At1g28190 0.13 1.95 0.88 1.70 1.28 2.49 4.54 3.45
At1g35210 0.12 3.48 1.42 2.99 1.56 3.85 4.89 3.67
At1g35230 0.86 1.16 3.10 3.56 4.79 5.14 5.71 4.79
At1g53540 1.07 −0.58 3.69 2.64 1.84 0.61 3.25 2.09
At1g54050 −0.32 −0.27 1.45 0.96 0.99 0.38 −0.94 −0.35
At1g57630 0.50 1.78 3.52 3.63 4.34 5.17 7.31 5.93
At1g59590 0.34 2.37 −0.49 1.78 0.45 2.38 4.38 3.47
At1g61340 0.58 4.60 3.49 4.09 2.73 3.39 3.14 2.37
At1g61820 1.12 −0.18 0.36 −0.31 0.44 1.35 0.67 −0.26
At1g62300 0.81 1.45 1.78 2.26 2.80 3.71 4.75 4.20
At1g63720 0.63 2.31 1.45 1.89 1.65 2.61 4.47 3.77
At1g66060 0.40 4.13 0.65 1.31 1.45 2.35 3.48 3.19
At1g69890 0.40 3.99 −0.98 0.72 0.30 1.17 2.46 1.52
At1g72520 0.76 3.97 2.97 2.83 2.25 3.28 2.90 2.46
At1g73010 −1.19 −0.41 3.01 0.07 2.30 0.83 0.28 −0.72
At1g74310 −0.20 0.23 0.36 −1.58 −0.38 −0.02 0.93 0.89
At1g74360 −0.03 1.13 1.65 1.64 2.06 3.83 4.91 4.33
At1g74590 0.04 −0.20 0.60 0.27 0.58 0.26 2.51 1.39
At1g76070 0.21 1.38 0.63 1.49 0.71 1.72 2.85 2.14
At1g76600 0.44 2.54 0.51 2.42 0.81 3.45 5.35 4.45
At1g77450 −0.38 2.87 3.24 2.02 2.49 2.79 3.49 2.98
At1g80820 0.21 0.59 2.97 2.05 1.34 2.97 2.65 2.13
At1g80840 0.10 5.25 1.19 3.41 2.45 5.82 7.28 6.96
At2g15480 0.00 1.47 0.06 0.79 0.25 2.84 5.35 4.25
At2g18210 0.05 3.07 0.43 0.96 0.17 1.55 0.61 0.22
At2g18690 0.59 2.15 2.04 2.34 2.73 4.62 6.05 5.59
At2g20560 −0.17 0.21 0.92 −0.31 −0.15 0.05 2.15 1.16
At2g22470 0.09 −0.19 2.37 1.46 2.77 1.30 1.04 1.13
At2g22880 0.79 5.67 1.97 3.69 2.64 4.81 4.38 4.64
At2g24540 0.42 1.13 8.22 7.56 4.97 5.63 0.77 2.64
At2g25735 0.86 3.43 −2.23 0.62 −0.84 1.68 3.57 3.00
At2g26150 −0.59 −0.02 1.64 −0.56 0.65 −0.58 2.39 1.80
At2g26530 0.32 3.73 0.82 3.15 1.07 2.42 2.44 2.12
At2g29490 −0.54 0.94 2.15 1.53 1.22 3.38 4.92 4.77
At2g29500 −0.04 0.17 1.43 1.02 0.63 1.94 0.96 1.79
At2g31945 0.40 1.82 1.06 1.22 1.17 2.34 1.79 2.25
At2g32030 0.42 4.03 0.48 2.74 0.93 4.61 5.56 4.93
At2g32120 0.46 0.37 −0.52 −0.09 −0.06 −0.86 −0.30 0.07
At2g33710 −0.04 2.90 −0.19 1.56 −0.25 3.66 3.87 3.13
At2g37430 −0.23 5.74 1.35 4.97 0.92 7.58 5.62 5.59
At2g38250 0.25 0.77 1.49 2.30 2.15 3.77 5.55 4.43
At2g38340 −0.07 −0.61 1.12 1.13 1.44 2.60 6.22 4.70
At2g38470 0.50 4.98 0.67 2.14 0.82 2.92 4.44 3.37
At2g40000 −0.14 3.35 −0.11 0.23 0.71 1.09 1.44 1.20
At2g41380 0.19 0.27 2.95 2.64 3.26 4.41 5.92 4.88
At2g41640 0.12 2.02 0.91 1.01 1.17 2.59 2.84 2.49
At2g43820 0.50 −0.11 −1.38 −0.24 0.09 0.68 3.02 3.05
At2g47000 0.15 0.22 0.59 2.57 0.55 4.43 7.60 6.33
At3g02800 0.14 2.31 0.32 0.24 0.24 2.02 2.39 2.03
At3g02840 0.16 6.31 2.03 3.30 1.52 6.03 5.78 4.98
At3g09270 0.63 0.34 1.67 1.09 0.99 0.59 3.57 2.16
At3g09350 −0.39 −0.12 1.10 −0.76 0.47 0.18 3.05 1.71
At3g09410 0.28 −0.27 0.22 0.81 0.22 1.66 1.46 −0.32
At3g10320 −0.36 0.84 2.31 1.49 3.05 2.85 6.78 3.90
At3g10930 0.72 4.25 1.97 3.89 3.08 5.28 7.56 5.90
At3g11840 1.19 1.22 1.67 0.87 0.88 1.81 3.81 2.49
At3g12580 1.37 −1.54 2.02 −0.52 −0.04 0.17 3.40 3.04
At3g13790 0.33 0.40 1.26 1.25 1.30 2.33 3.74 4.00
At3g15950 0.61 0.49 −0.10 0.56 −0.48 −0.36 0.16 −1.29
At3g16530 0.75 1.15 −0.28 0.06 −1.28 0.54 4.65 1.65
At3g17690 0.46 −0.81 3.25 1.73 2.59 2.74 6.04 3.25
At3g23230 1.17 3.23 0.32 0.93 1.19 4.09 5.32 4.06
At3g24500 −0.21 −0.49 0.36 −1.09 −0.42 −0.04 1.97 0.95
At3g25250 0.60 4.11 3.64 5.31 3.47 7.26 8.67 7.12
At3g26830 0.15 1.47 2.83 1.84 2.11 6.03 9.59 7.36
At3g28210 0.46 0.60 1.23 2.06 1.51 1.83 3.96 3.45
At3g46230 0.47 −0.41 2.47 2.16 1.53 0.83 1.95 1.24
At3g48650 0.96 3.89 1.28 2.32 2.62 2.89 4.03 4.23
At3g49580 −0.33 0.23 0.36 1.50 1.69 2.34 −0.07 0.17
At3g53230 0.98 −0.30 1.79 0.98 2.59 1.30 3.39 2.56
At3g55980 0.51 3.84 −0.17 0.94 0.26 1.99 3.60 2.75
At4g11280 0.62 1.59 0.86 1.13 0.45 2.56 4.27 3.03
At4g12400 0.07 −0.19 0.03 −0.76 −0.78 −0.16 1.54 0.28
At4g15975 0.79 0.36 −0.56 1.46 0.64 1.89 2.25 1.54
At4g17490 0.54 4.42 −0.53 2.52 0.41 2.78 3.29 2.20
At4g18880 0.71 2.71 0.86 2.34 0.92 2.21 3.85 2.85
At4g21390 0.88 3.70 2.50 3.44 2.71 4.86 4.60 4.41
At4g21990 −0.31 0.65 1.41 0.59 0.41 1.39 1.54 0.92
At4g22530 0.38 −0.24 0.47 1.22 1.28 2.57 5.23 3.65
At4g24160 0.26 0.81 0.44 0.42 0.93 1.16 2.30 1.45
At4g24380 0.35 1.30 1.66 2.38 1.72 1.98 1.16 1.32
At4g24570 0.47 4.23 0.83 1.58 1.84 1.74 3.07 2.49
At4g37370 0.49 2.81 1.93 3.87 1.49 6.08 7.75 6.09
At4g39670 0.42 3.84 4.90 4.92 4.99 7.53 7.85 7.52
At5g04340 −0.25 4.78 3.28 3.13 2.87 3.10 5.35 4.22
At5g05730 0.52 0.78 1.40 2.23 0.49 1.27 2.95 1.99
At5g12020 0.23 −0.51 5.32 2.84 4.18 2.59 3.09 4.15
At5g12030 −0.18 0.07 3.39 1.03 1.22 1.97 2.90 3.00
At5g14700 0.19 1.14 2.48 2.11 1.59 1.74 1.49 0.80
At5g14730 0.43 0.40 −2.54 0.66 −1.85 1.42 3.48 2.00
At5g20230 0.60 1.47 2.40 3.33 3.30 4.82 6.06 5.41
At5g24110 −0.06 3.73 3.44 2.57 1.70 6.51 5.79 5.52
At5g25450 0.56 0.10 0.28 0.71 −0.36 0.63 3.48 1.90
At5g26220 0.28 −0.92 3.63 3.72 3.07 3.70 1.03 2.45
At5g27420 0.31 5.03 1.59 2.62 1.58 3.90 5.10 4.47
At5g28630 0.49 2.02 −2.90 −1.34 −1.83 −1.21 0.61 −0.72
At5g35320 −0.22 −0.13 0.67 −0.22 0.35 0.34 1.39 0.90
At5g46080 0.08 0.91 0.12 0.83 0.24 1.88 2.22 1.80
At5g47230 0.33 4.12 −0.05 2.21 0.55 2.13 3.61 2.44
At5g48570 0.33 −0.17 0.75 −0.27 −0.33 0.15 1.24 0.09
At5g48850 0.08 −0.39 1.07 1.52 1.74 2.90 −0.01 −0.41
At5g51060 0.40 −0.06 3.50 1.86 3.84 5.46 3.43 3.85
At5g51190 0.48 2.77 0.08 2.40 0.88 2.31 3.88 2.30
At5g51440 0.34 −0.29 0.65 1.16 −0.44 3.85 7.36 6.33
At5g52640 0.06 −0.18 0.96 −0.98 0.22 1.21 2.80 2.26
At5g54490 0.56 2.96 0.57 2.85 0.59 2.05 4.01 3.20
At5g57220 1.48 3.18 −1.68 0.44 −1.37 2.76 4.81 3.61
At5g59820 0.03 3.84 2.65 4.19 2.19 5.95 5.87 4.99
At5g63790 −0.37 2.42 1.55 1.69 1.63 3.47 3.56 3.23
At5g64310 0.29 1.92 1.58 1.13 1.61 0.13 0.53 0.54
At5g64510 −0.16 0.22 1.38 0.09 0.88 0.80 1.18 1.12
At5g64905 0.44 2.58 1.89 2.56 1.04 5.04 6.27 4.05

Numbers indicate log2 fold-change (FCh) expression ratio of genes after transferring plants to ambient CO2 concentration compared to high CO2 concentration. Values are means of two biological replicates.

Table A2.

Numbers indicate log2 fold-change (FCh) expression ratio of genes after transferring plants to ambient CO2 concentration compared to high CO2 concentration.

AGI Gene family log2 FCh
0.5h WT 0.5h GO
At1g01030 ABI3/VP1 0.74 0.97
At3g16280 AP2/EREBP 0.34 0.49
At3g16770 AP2/EREBP 0.28 0.61
At2g30470 ABI3/VP1 −0.01 −0.02
At3g20310 AP2/EREBP 0.82 0.98
At2g36080 ABI3/VP1 0.53 1.08
At2g46870 ABI3/VP1 −0.03 −0.16
At3g11580 ABI3/VP1 −0.23 2.19
At3g23230 AP2/EREBP 1.28 4.67
At3g25730 AP2/EREBP 0.05 0.61
At3g61970 ABI3/VP1 −0.11 0.10
At3g25890 AP2/EREBP 0.18 0.54
At4g01500 ABI3/VP1 0.92 0.50
At3g50260 AP2/EREBP 4.28 4.54
At4g21550 ABI3/VP1 −1.81 −3.72
At3g54320 AP2/EREBP 0.63 0.32
At5g60450 ARF 0.02 −0.28
At3g18990 B3 −0.02 0.53
At5g62000 ARF 0.38 0.47
At3g46770 B3 −1.55 0.31
At1g04880 ARID 0.01 −0.59
At3g53310 B3 −0.46 0.31
At1g20910 ARID 0.22 0.32
At4g00260 B3 4.43 −2.09
At4g01580 B3 −0.21 0.06
At1g76110 ARID 0.00 0.43
At1g76510 ARID 0.03 0.81
At4g31620 B3 1.67 −0.99
At2g46040 ARID 0.14 0.29
At3g13350 ARID −0.31 0.31
At3g43240 ARID −0.01 0.03
At4g31650 B3 −0.28 −0.17
At4g32010 ABI3/VP1 0.36 0.21
At5g06250 ABI3/VP1 −0.53 −0.16
At3g57600 AP2/EREBP 0.24 0.25
At1g14510 Alfin 0.10 0.17
At3g60490 AP2/EREBP 0.06 1.23
At2g02470 Alfin 0.29 0.45
At3g61630 AP2/EREBP 0.68 0.94
At3g11200 Alfin −0.15 0.33
At4g06746 AP2/EREBP 1.76 3.06
At3g42790 Alfin −0.01 0.42
At4g11140 AP2/EREBP −0.16 −0.03
At5g05610 Alfin 0.10 0.51
At4g13040 AP2/EREBP 0.29 0.88
At5g20510 Alfin −0.54 0.10
At5g26210 Alfin −0.11 0.58
At4g16750 AP2/EREBP −0.56 1.55
At1g01250 AP2/EREBP −0.28 0.58
At4g17490 AP2/EREBP 4.25 5.93
At1g03800 AP2/EREBP 1.34 0.43
At4g17500 AP2/EREBP 1.21 2.79
At1g07900 AS2 (LOB) I 1.44 2.66
At1g16530 AS2 (LOB) I 1.40 0.91
At4g33280 B3 0.70 0.00
At1g31320 AS2 (LOB) I 0.77 0.35
At4g34400 B3 2.13 −0.37
At1g65620 AS2 (LOB) I 0.21 0.09
At5g18000 B3 −1.97 −0.43
At5g18090 B3 −0.20 −0.09
At5g32460 B3 0.41 6.95
At2g19820 AS2 (LOB) I 0.64 1.07
At5g58280 B3 −0.34 −2.35
At2g28500 AS2 (LOB) I 2.53 4.01
At5g60130 B3 −1.04 0.36
At5g60140 B3 0.34 0.37
At2g30340 AS2 (LOB) I 0.19 0.81
At1g06160 AP2/EREBP −0.34 1.14
At4g23750 AP2/EREBP 0.75 0.56
At4g25470 AP2/EREBP 6.18 6.85
At1g12630 AP2/EREBP −0.01 0.40
At4g25480 AP2/EREBP 6.17 5.68
At1g12890 AP2/EREBP 1.89 2.51
At4g27950 AP2/EREBP 0.73 −0.08
At1g13260 AP2/EREBP 0.63 1.06
At4g28140 AP2/EREBP 5.79 8.83
At4g31060 AP2/EREBP −0.16 −0.16
At1g16060 AP2/EREBP 0.22 0.42
At4g32800 AP2/EREBP −0.09 0.94
At1g19210 AP2/EREBP 3.96 4.18
At4g34410 AP2/EREBP 6.02 8.13
At1g21910 AP2/EREBP −0.50 0.27
At4g36900 AP2/EREBP 0.31 1.15
At1g22190 AP2/EREBP 5.46 2.69
At4g36920 AP2/EREBP −0.12 0.06
At1g22810 AP2/EREBP 6.10 7.03
At4g37750 AP2/EREBP 0.16 0.01
At1g01260 bHLH 0.40 0.98
At2g40470 AS2 (LOB) I −0.03 1.14
At1g02340 bHLH −0.38 0.48
At1g03040 bHLH 0.05 0.42
At1g05805 bHLH 0.26 0.69
At1g06150 bHLH 0.09 −0.14
At2g45420 AS2 (LOB) I −0.51 1.14
At1g06170 bHLH −0.71 0.30
At1g09250 bHLH −0.08 0.96
At3g11090 AS2 (LOB) I −0.12 0.14
At1g09530 bHLH 0.01 0.32
At3g13850 AS2 (LOB) I 1.00 −6.02
At1g10120 bHLH −0.24 −0.09
At3g26620 AS2 (LOB) I 0.44 1.02
At1g10610 bHLH −0.31 −0.23
At3g27650 AS2 (LOB) I −0.85 0.20
At1g12860 bHLH −0.38 0.00
At1g22985 AP2/EREBP −0.01 0.73
At4g39780 AP2/EREBP 1.31 1.31
At5g05410 AP2/EREBP 2.04 2.95
At1g25560 AP2/EREBP −0.64 0.28
At5g07580 AP2/EREBP −1.35 −0.87
At5g10510 AP2/EREBP 0.85 −0.42
At1g28360 AP2/EREBP 1.36 0.70
At5g11190 AP2/EREBP −0.20 0.55
At1g28370 AP2/EREBP 4.77 6.09
At5g11590 AP2/EREBP 0.72 1.28
At1g33760 AP2/EREBP 2.49 3.60
At5g13330 AP2/EREBP 0.32 0.69
At1g36060 AP2/EREBP 1.26 0.20
At5g13910 AP2/EREBP −0.26 −0.89
At1g43160 AP2/EREBP 0.23 3.13
At1g44830 AP2/EREBP −2.15 −0.73
At1g46768 AP2/EREBP 1.17 1.07
At3g27940 AS2 (LOB) I −0.16 0.39
At1g18400 bHLH −0.34 0.85
At1g22490 bHLH 0.09 0.48
At3g50510 AS2 (LOB) I −0.42 −0.90
At4g00210 AS2 (LOB) I −0.04 −0.62
At1g26260 bHLH 0.27 0.61
At4g00220 AS2 (LOB) I 0.19 0.64
At1g27660 bHLH −0.17 0.58
At4g22700 AS2 (LOB) I 2.94 6.51
At1g29950 bHLH −0.04 0.21
At5g63090 AS2 (LOB) I −0.61 1.16
At1g31050 bHLH −0.13 0.66
At1g32640 bHLH 1.91 2.86
At1g35460 bHLH 0.12 0.70
At5g19790 AP2/EREBP −2.72 4.75
At1g50640 AP2/EREBP 1.59 1.23
At5g25190 AP2/EREBP 0.01 0.99
At5g25390 AP2/EREBP −1.43 1.04
At5g25810 AP2/EREBP −0.56 0.18
At1g53170 AP2/EREBP 2.63 3.00
At1g53910 AP2/EREBP 0.13 0.61
At5g44210 AP2/EREBP 1.55 1.59
At5g47220 AP2/EREBP 1.15 2.75
At1g63040 AP2/EREBP 1.40 1.52
At5g47230 AP2/EREBP 4.34 4.94
At1g64380 AP2/EREBP 4.20 4.16
At1g68550 AP2/EREBP 0.10 −0.13
At5g51190 AP2/EREBP 0.91 4.21
At1g68840 AP2/EREBP 0.32 1.62
At1g43770 bHLH −0.44 0.19
At3g02550 AS2 (LOB) II 0.40 −0.76
At3g49940 AS2 (LOB) II 1.10 1.64
At1g51070 bHLH 0.12 0.63
At4g37540 AS2 (LOB) II 0.47 1.39
At1g51140 bHLH −0.08 0.61
At5g67420 AS2 (LOB) II 1.15 1.20
At1g59640 bHLH 0.02 −0.10
At1g04100 Aux/IAA −0.74 0.52
At1g04240 Aux/IAA −0.77 0.28
At1g62975 bHLH 0.22 0.71
At1g04250 Aux/IAA −0.33 0.99
At1g63650 bHLH −0.09 0.44
At1g04550 Aux/IAA 0.18 0.50
At1g15050 Aux/IAA 0.46 0.92
At1g68240 bHLH 0.35 0.59
At1g15580 Aux/IAA 0.12 1.26
At1g68810 bHLH −0.02 0.74
At1g51950 Aux/IAA −0.20 0.45
At1g68920 bHLH −0.18 0.15
At1g71130 AP2/EREBP −0.06 0.73
At5g52020 AP2/EREBP 1.59 2.60
At5g53290 AP2/EREBP 0.94 −0.17
At1g71520 AP2/EREBP 3.60 5.02
At5g57390 AP2/EREBP 0.39 0.17
At1g72360 AP2/EREBP −0.55 0.43
At5g60120 AP2/EREBP 0.40 0.42
At5g61590 AP2/EREBP −2.96 −1.76
At1g74930 AP2/EREBP 4.49 4.80
At5g61600 AP2/EREBP 2.71 3.70
At1g75490 AP2/EREBP 0.73 2.15
At5g61890 AP2/EREBP 1.25 1.22
At1g77200 AP2/EREBP −0.98 0.45
At5g64750 AP2/EREBP 2.48 2.27
At1g77640 AP2/EREBP 0.09 −0.48
At5g65130 AP2/EREBP 0.56 0.64
At1g78080 AP2/EREBP 2.43 2.50
At5g65510 AP2/EREBP −0.63 −1.49
At1g79700 AP2/EREBP −0.22 0.66
At1g52830 Aux/IAA −0.12 0.08
At1g69010 bHLH 0.15 0.79
At1g80390 Aux/IAA 1.08 1.72
At2g01200 Aux/IAA 0.54 1.25
At1g72210 bHLH 1.02 −0.58
At2g22670 Aux/IAA 0.01 0.19
At1g73830 bHLH −1.22 −0.72
At2g33310 Aux/IAA 0.04 0.16
At2g46990 Aux/IAA 0.07 1.22
At3g04730 Aux/IAA −0.10 0.48
At3g15540 Aux/IAA −0.25 0.47
At2g18300 bHLH −0.68 0.05
At3g16500 Aux/IAA 0.10 0.71
At2g20095 bHLH −0.12 −0.12
At3g17600 Aux/IAA −0.27 1.57
At2g20180 bHLH −0.53 −0.23
At3g23030 Aux/IAA 0.77 1.53
At3g23050 Aux/IAA −0.39 0.82
At5g67180 AP2/EREBP −0.23 −0.32
At2g20880 AP2/EREBP 5.11 7.22
At5g67190 AP2/EREBP 0.53 1.47
At2g22200 AP2/EREBP 2.28 3.07
At1g19220 ARF 0.14 −0.07
At2g23340 AP2/EREBP 0.86 0.80
At1g19850 ARF 0.49 −0.37
At2g25820 AP2/EREBP 0.00 1.42
At1g30330 ARF −0.01 0.08
At2g28550 AP2/EREBP 0.34 0.56
At2g31230 AP2/EREBP 0.80 1.51
At2g33710 AP2/EREBP 0.95 3.51
At2g35700 AP2/EREBP 0.17 0.93
At2g38340 AP2/EREBP 0.45 −0.20
At2g39250 AP2/EREBP 0.76 1.64
At3g62100 Aux/IAA 0.32 0.57
At2g22770 bHLH −0.12 0.93
At4g14550 Aux/IAA −0.28 0.76
At2g24260 bHLH 0.79 0.38
At4g14560 Aux/IAA 0.83 1.05
At2g27230 bHLH −0.04 0.21
At4g28640 Aux/IAA −0.11 0.17
At2g28160 bHLH −0.42 0.10
At4g29080 Aux/IAA −0.18 0.62
At4g32280 Aux/IAA −1.14 0.38
At5g25890 Aux/IAA 0.21 1.03
At2g31220 bHLH −0.84 −0.45
At5g43700 Aux/IAA −0.45 0.70
At2g31280 bHLH 0.10 0.00
At5g65670 Aux/IAA −0.05 0.63
At2g40200 bHLH −0.23 −0.03
At1g16640 B3 0.06 0.46
At2g41130 bHLH 0.08 1.11
At2g41240 bHLH −0.57 −0.87
At1g59750 ARF 0.07 0.03
At2g41710 AP2/EREBP 0.18 0.38
At2g28350 ARF −0.62 −0.35
At2g44840 AP2/EREBP 3.55 6.34
At2g33860 ARF 0.69 −1.21
At2g44940 AP2/EREBP −1.71 0.13
At2g46530 ARF 0.16 0.35
At2g46310 AP2/EREBP 0.82 0.82
At3g61830 ARF 0.10 0.06
At2g47520 AP2/EREBP 0.66 0.34
At4g23980 ARF 0.23 0.39
At3g11020 AP2/EREBP 2.08 1.74
At4g30080 ARF −0.25 0.49
At3g14230 AP2/EREBP −0.02 0.72
At3g15210 AP2/EREBP 3.50 4.06
At5g37020 ARF 0.16 0.28
At1g49480 B3 −0.09 0.45
At2g42280 bHLH 0.28 0.96
At2g42300 bHLH −0.56 −0.31
At2g24650 B3 −0.39 −0.14
At2g43010 bHLH −0.31 0.16
At2g24680 B3 −0.08 −0.28
At2g43140 bHLH 0.57 −0.38
At2g24690 B3 −0.13 0.18
At2g46510 bHLH 0.71 1.44
At2g24700 B3 0.73 −1.17
At2g46810 bHLH −0.30 0.56
At2g35310 B3 −0.37 −1.10
At2g46970 bHLH −0.05 0.23
At3g06160 B3 −0.09 −0.37
At2g47270 bHLH 2.01 2.21
At3g06220 B3 0.29 −1.37
At3g05800 bHLH 0.95 2.40
At3g06120 bHLH −0.05 0.15
At3g18960 B3 −7.62 −0.50
At3g06590 bHLH −0.13 0.39
At3g07340 bHLH −0.64 −0.30
At1g03970 bZIP 0.13 0.69
At3g17100 bHLH −0.45 0.12
At1g06070 bZIP 0.42 0.19
At3g19500 bHLH −0.26 1.20
At1g06850 bZIP −0.43 −0.02
At3g19860 bHLH 0.41 0.25
At3g20640 bHLH 0.33 0.92
At1g13600 bZIP −1.07 0.97
At3g21330 bHLH 0.35 0.61
At1g19490 bZIP 0.84 0.90
At3g22100 bHLH 1.18 3.16
At1g22070 bZIP −0.40 0.67
At3g23210 bHLH 0.99 0.86
At1g32150 bZIP 0.47 0.72
At3g23690 bHLH −0.16 0.26
At3g24140 bHLH 0.40 0.37
At3g25710 bHLH 0.75 0.89
At1g43700 bZIP −0.04 0.56
At2g24790 C2C2(Zn) CO-like 0.18 0.97
At1g65110 C2H2 −0.67 1.69
At2g31380 C2C2(Zn) CO-like 0.59 0.81
At2g33500 C2C2(Zn) CO-like 0.11 0.65
At1g01930 C2H2 0.09 0.61
At2g47890 C2C2(Zn) CO-like 1.09 0.50
At1g02030 C2H2 0.55 0.82
At1g02040 C2H2 −0.50 0.39
At3g07650 C2C2(Zn) CO-like 0.87 1.08
At1g03840 C2H2 −0.66 −0.15
At3g21150 C2C2(Zn) CO-like 2.51 2.93
At1g04445 C2H2 2.53 0.68
At3g21880 C2C2(Zn) CO-like 2.16 2.79
At1g04990 C2H2 0.57 0.90
At3g21890 C2C2(Zn) CO-like 2.59 3.55
At1g08290 C2H2 0.59 0.38
At1g11490 C2H2 −0.51 0.33
At3g26744 bHLH 0.13 0.20
At1g45249 bZIP 0.80 1.01
At3g47640 bHLH 0.72 0.61
At1g49720 bZIP 0.49 0.83
At1g58110 bZIP 0.45 0.86
At3g56220 bHLH −1.25 0.07
At1g68640 bZIP −1.16 0.31
At3g56770 bHLH −0.24 2.17
At1g68880 bZIP −0.67 2.34
At3g56970 bHLH 0.11 0.05
At1g75390 bZIP −0.43 −0.27
At3g56980 bHLH 0.00 −1.18
At1g77920 bZIP −0.42 1.26
At3g57800 bHLH −0.13 0.19
At2g04038 bZIP −0.54 −0.49
At3g59060 bHLH 0.26 0.45
At3g61950 bHLH −0.02 −0.58
At3g62090 bHLH −1.46 1.29
At2g13150 bZIP 0.01 1.62
At4g27310 C2C2(Zn) CO-like 0.45 0.48
At4g38960 C2C2(Zn) CO-like 0.48 1.05
At1g14580 C2H2 2.14 0.20
At4g39070 C2C2(Zn) CO-like 0.25 1.79
At1g24625 C2H2 −0.61 0.31
At5g15840 C2C2(Zn) CO-like 0.78 0.61
At1g24630 C2H2 −0.54 0.33
At5g15850 C2C2(Zn) CO-like 0.53 1.05
At1g25250 C2H2 0.37 0.91
At5g24930 C2C2(Zn) CO-like 0.28 0.89
At1g26590 C2H2 −1.62 0.50
At5g48250 C2C2(Zn) CO-like −0.69 0.48
At1g26610 C2H2 0.12 1.22
At5g54470 C2C2(Zn) CO-like 1.52 1.54
At1g27730 C2H2 0.82 5.18
At5g57660 C2C2(Zn) CO-like 0.19 0.82
At1g07640 C2C2(Zn) DOF 0.08 −0.17
At1g29600 C2H2 0.08 −0.17
At1g30970 C2H2 0.68 −0.31
At1g26790 C2C2(Zn) DOF 3.01 −0.64
At1g34370 C2H2 0.69 0.88
At4g00050 bHLH 0.72 0.13
At2g16770 bZIP −0.20 0.52
At2g17770 bZIP 0.58 −0.17
At4g00480 bHLH −0.33 0.45
At2g18160 bZIP −0.71 −0.12
At4g00870 bHLH 0.28 −0.84
At2g21230 bZIP −0.06 0.48
At4g01460 bHLH 0.42 0.87
At4g02590 bHLH 0.46 0.34
At2g22850 bZIP 0.04 0.88
At4g05170 bHLH −0.31 0.75
At2g31370 bZIP −0.02 0.42
At4g09180 bHLH −0.09 0.20
At4g09820 bHLH −0.41 5.10
At2g35530 bZIP 0.91 0.48
At4g14410 bHLH 0.02 0.67
At2g36270 bZIP 1.10 −1.17
At4g16430 bHLH 0.11 0.77
At2g40620 bZIP 0.26 0.07
At4g17880 bHLH −0.77 0.12
At2g40950 bZIP 0.28 0.42
At1g28310 C2C2(Zn) DOF −0.03 0.26
At1g29160 C2C2(Zn) DOF 0.11 0.40
At1g43850 C2H2 0.68 0.58
At1g43860 C2H2 −0.09 0.69
At1g47655 C2C2(Zn) DOF 0.24 0.22
At1g47860 C2H2 0.41 0.36
At1g51700 C2C2(Zn) DOF 1.89 2.29
At1g64620 C2C2(Zn) DOF 0.58 0.47
At1g55110 C2H2 1.08 1.07
At1g69570 C2C2(Zn) DOF −0.38 0.90
At1g65120 C2H2 0.37 0.81
At2g28510 C2C2(Zn) DOF 0.91 0.81
At1g65130 C2H2 0.21 2.67
At2g28810 C2C2(Zn) DOF 0.55 0.14
At1g66140 C2H2 −0.06 0.25
At2g34140 C2C2(Zn) DOF −0.27 0.52
At1g67030 C2H2 0.79 0.65
At2g37590 C2C2(Zn) DOF 0.52 0.87
At1g68130 C2H2 0.45 0.38
At2g46590 C2C2(Zn) DOF −0.20 0.11
At1g68360 C2H2 −0.13 0.27
At4g20970 bHLH −0.07 0.90
At2g41070 bZIP 0.53 0.53
At2g42380 bZIP −0.86 0.03
At2g46270 bZIP 1.20 1.64
At3g10800 bZIP 0.40 0.74
At4g25410 bHLH −0.12 0.27
At3g12250 bZIP 0.20 0.05
At4g28790 bHLH −0.73 0.03
At3g17609 bZIP 0.95 1.16
At3g19290 bZIP 0.69 0.77
At4g29100 bHLH 0.23 0.41
At4g29930 bHLH 0.81 1.31
At4g30180 bHLH −0.72 1.33
At3g51960 bZIP 0.19 0.90
At4g30980 bHLH 1.72 0.14
At3g54620 bZIP 0.29 0.62
At3g21270 C2C2(Zn) DOF −0.33 0.48
At1g68480 C2H2 1.49 −0.70
At3g45610 C2C2(Zn) DOF 0.40 0.68
At1g72050 C2H2 0.28 0.53
At3g47500 C2C2(Zn) DOF 0.49 0.62
At1g75710 C2H2 0.00 0.15
At3g50410 C2C2(Zn) DOF −0.05 0.48
At3g52440 C2C2(Zn) DOF 1.88 5.20
At2g01940 C2H2 −0.65 0.35
At3g55370 C2C2(Zn) DOF 0.29 0.63
At2g02070 C2H2 1.78 0.18
At3g61850 C2C2(Zn) DOF −0.38 0.07
At2g02080 C2H2 0.73 0.09
At4g00940 C2C2(Zn) DOF −0.37 0.42
At2g24500 C2H2 0.08 0.74
At3g56660 bZIP 0.37 −1.96
At4g34530 bHLH 0.09 0.38
At3g56850 bZIP 0.60 0.69
At4g36060 bHLH 0.04 0.50
At3g58120 bZIP −1.52 −0.95
At4g36540 bHLH −0.04 0.55
At3g62420 bZIP −0.33 0.61
At4g36930 bHLH 0.44 −0.33
At4g01120 bZIP 0.23 0.87
At4g02640 bZIP −0.01 0.50
At4g34000 bZIP 1.11 1.02
At5g01310 bHLH 0.43 0.70
At4g34590 bZIP −0.18 0.39
At4g35040 bZIP −0.47 0.57
At5g08130 bHLH 1.02 0.38
At4g35900 bZIP −0.08 2.91
At5g09460 bHLH −0.34 0.36
At4g36730 bZIP 0.26 0.51
At4g37730 bZIP 0.45 0.62
At4g24060 C2C2(Zn) DOF −0.08 0.64
At2g26940 C2H2 0.02 0.88
At4g38000 C2C2(Zn) DOF −0.99 1.49
At2g27100 C2H2 0.54 −0.21
At5g02460 C2C2(Zn) DOF 0.21 0.68
At5g39660 C2C2(Zn) DOF 0.40 1.33
At2g28200 C2H2 0.07 0.17
At5g60200 C2C2(Zn) DOF 0.27 0.77
At2g28710 C2H2 −0.51 0.59
At5g60850 C2C2(Zn) DOF 0.19 0.86
At2g29660 C2H2 −0.46 0.39
At5g62430 C2C2(Zn) DOF 0.67 1.18
At2g32930 C2H2 1.70 0.92
At5g62940 C2C2(Zn) DOF 0.06 0.71
At2g36480 C2H2 1.21 0.13
At5g65590 C2C2(Zn) DOF −0.42 1.18
At2g36930 C2H2 0.44 0.09
At5g66940 C2C2(Zn) DOF −0.38 −0.49
At2g37430 C2H2 0.89 6.33
At1g08000 C2C2(Zn) GATA 0.96 0.62
At1g08010 C2C2(Zn) GATA 1.05 0.41
At2g41940 C2H2 −0.76 −0.76
At5g10570 bHLH −0.02 0.94
At4g38900 bZIP 0.12 0.61
At5g15160 bHLH −0.19 0.27
At5g04840 bZIP −0.06 0.25
At5g38860 bHLH −0.35 0.30
At5g06950 bZIP −3.42 0.81
At5g39860 bHLH 0.12 0.52
At5g06960 bZIP −0.07 0.40
At5g41315 bHLH 1.22 1.01
At5g10030 bZIP 0.35 0.31
At5g46690 bHLH −0.39 −0.34
At5g11260 bZIP 0.99 1.14
At5g46760 bHLH −0.05 0.14
At5g15830 bZIP −0.61 0.39
At5g46830 bHLH −1.47 0.32
At5g24800 bZIP 0.20 1.07
At5g48560 bHLH 0.03 0.29
At5g28770 bZIP −0.12 0.14
At1g51600 C2C2(Zn) GATA 0.23 0.85
At2g18380 C2C2(Zn) GATA 0.38 0.38
At2g45120 C2H2 0.20 0.28
At2g28340 C2C2(Zn) GATA 0.97 −0.02
At2g45050 C2C2(Zn) GATA −0.39 0.90
At3g01460 C2H2 1.21 0.34
At3g06740 C2C2(Zn) GATA −1.20 −0.64
At3g02790 C2H2 0.01 0.28
At3g16870 C2C2(Zn) GATA 0.02 −0.47
At3g02830 C2H2 0.22 0.54
At3g05760 C2H2 0.05 0.63
At3g21175 C2C2(Zn) GATA 0.07 0.55
At3g24050 C2C2(Zn) GATA 0.60 0.45
At3g10470 C2H2 0.41 −0.30
At3g13810 C2H2 0.29 1.00
At3g50870 C2C2(Zn) GATA 0.44 −0.02
At3g14740 C2H2 0.23 0.41
At3g51080 C2C2(Zn) GATA 0.43 0.39
At3g19580 C2H2 2.44 2.95
At5g50010 bHLH −0.53 0.99
At5g50915 bHLH 0.50 1.15
At5g51780 bHLH 0.72 2.43
At5g44080 bZIP 0.05 0.31
At5g51790 bHLH −0.57 0.21
At5g49450 bZIP −0.04 1.02
At5g60830 bZIP 2.50 1.55
At5g54680 bHLH 0.45 0.44
At5g65210 bZIP −0.10 0.17
At5g56960 bHLH 2.39 3.26
At1g19350 BZR 0.89 0.72
At5g57150 bHLH 0.27 0.55
At1g75080 BZR 1.20 0.95
At1g78700 BZR 1.74 0.50
At5g61270 bHLH 0.44 0.46
At3g50750 BZR −0.10 0.34
At5g62610 bHLH 0.28 0.85
At4g18890 BZR 0.53 0.42
At5g64340 bHLH −0.31 −0.18
At4g36780 BZR 0.65 0.53
At3g54810 C2C2(Zn) GATA −0.02 −0.20
At3g60530 C2C2(Zn) GATA −0.45 0.31
At4g17570 C2C2(Zn) GATA −0.05 0.49
At4g24470 C2C2(Zn) GATA 0.48 0.09
At4g26150 C2C2(Zn) GATA 0.65 0.37
At3g44750 C2H2 0.06 0.23
At4g32890 C2C2(Zn) GATA 0.18 −0.17
At3g45260 C2H2 −0.02 0.11
At4g34680 C2C2(Zn) GATA 0.23 0.40
At4g36240 C2C2(Zn) GATA 0.02 0.26
At3g46080 C2H2 1.17 3.27
At4g36620 C2C2(Zn) GATA 0.51 0.01
At3g46090 C2H2 2.29 3.65
At5g25830 C2C2(Zn) GATA −0.11 −0.10
At3g47890 C2H2 −0.01 0.20
At5g26930 C2C2(Zn) GATA −0.49 3.26
At3g49930 C2H2 0.75 0.06
At5g47140 C2C2(Zn) GATA 0.04 0.70
At3g50700 C2H2 −0.32 1.30
At5g65320 bHLH −0.83 −0.16
At1g06040 C2C2(Zn) CO-like 0.05 0.86
At5g65640 bHLH 0.04 0.79
At1g25440 C2C2(Zn) CO-like −0.45 0.31
At5g67060 bHLH −0.44 0.21
At1g28050 C2C2(Zn) CO-like −0.09 1.01
At5g67110 bHLH 0.27 −0.20
At1g49130 C2C2(Zn) CO-like −0.17 1.01
At1g14685 BPC/BRR 0.13 0.32
At1g68120 BPC/BRR 0.25 0.02
At1g68190 C2C2(Zn) CO-like −0.39 0.54
At2g21240 BPC/BRR −0.01 0.58
At1g68520 C2C2(Zn) CO-like −0.58 0.18
At2g35550 BPC/BRR 0.12 0.92
At1g73870 C2C2(Zn) CO-like 0.59 0.68
At4g01930 BPC/BRR 0.85 1.64
At1g75540 C2C2(Zn) CO-like −0.40 2.37
At1g78600 C2C2(Zn) CO-like 0.62 0.33
At5g42520 BPC/BRR 0.34 0.40
At2g21320 C2C2(Zn) CO-like −0.09 0.69
At5g49300 C2C2(Zn) GATA −0.24 1.01
At3g53600 C2H2 2.47 3.37
At5g56860 C2C2(Zn) GATA −0.18 0.00
At5g66320 C2C2(Zn) GATA 2.87 0.64
At3g57480 C2H2 0.08 0.73
At1g08465 C2C2(Zn) YABBY −0.20 0.56
At3g57670 C2H2 0.41 0.16
At3g58070 C2H2 0.09 1.07
At3g60580 C2H2 −0.19 0.51
At2g26580 C2C2(Zn) YABBY 0.37 0.81
At3g62240 C2H2 1.63 0.15
At2g45190 C2C2(Zn) YABBY 0.77 0.16
At4g02670 C2H2 0.69 0.56
At4g00180 C2C2(Zn) YABBY 0.58 0.26
At4g12240 C2H2 −0.34 0.18
At1g13400 C2H2 −0.19 −0.76
At4g15420 C2H2 0.12 0.83
At4g16610 C2H2 0.00 0.90
At4g17810 C2H2 −0.51 0.32
At3g14020 CCAAT-HAP2 1.21 0.92
At4g25610 C2H2 0.40 −0.74
At3g20910 CCAAT-HAP2 0.32 0.82
At5g06510 CCAAT-HAP2 0.02 −0.06
At4g27240 C2H2 −0.26 −0.11
At5g12840 CCAAT-HAP2 0.72 0.84
At4g31420 C2H2 −0.12 0.80
At2g13570 CCAAT-HAP3 −0.16 0.24
At2g27470 CCAAT-HAP3 0.09 −0.03
At5g01160 C2H2 0.90 0.52
At2g37060 CCAAT-HAP3 0.13 0.74
At2g38880 CCAAT-HAP3 0.42 0.78
At5g03150 C2H2 0.34 −0.17
At1g52150 HB 1.63 −0.43
At3g46640 GARP-G2-like −0.17 −0.95
At1g62360 HB −2.54 −1.92
At1g62990 HB 0.07 0.92
At4g13640 GARP-G2-like 0.27 0.30
At1g69780 HB −0.93 0.70
At1g70920 HB 0.28 1.29
At4g28610 GARP-G2-like 0.50 0.62
At1g73360 HB −0.50 0.20
At4g37180 GARP-G2-like 0.53 1.36
At1g75410 HB 0.09 0.62
At5g05090 GARP-G2-like −0.21 0.30
At5g06800 GARP-G2-like 0.46 0.73
At1g79840 HB −0.06 0.26
At5g16560 GARP-G2-like −0.68 −0.18
At2g01430 HB 0.89 −0.31
At5g03510 C2H2 −0.33 −0.01
At3g53340 CCAAT-HAP3 −1.44 2.69
At5g03740 C2H2 0.13 0.28
At4g14540 CCAAT-HAP3 −0.19 0.56
At5g04340 C2H2 3.93 5.44
At5g47640 CCAAT-HAP3 0.91 1.44
At5g04390 C2H2 −0.65 −1.44
At5g47670 CCAAT-HAP3 0.54 −0.21
At1g07980 CCAAT-HAP5 −0.06 0.39
At1g08970 CCAAT-HAP5 0.23 0.74
At5g06650 C2H2 0.41 −0.09
At1g54830 CCAAT-HAP5 0.67 0.82
At5g09740 C2H2 0.15 0.51
At1g56170 CCAAT-HAP5 0.58 0.90
At5g10970 C2H2 −1.15 −0.37
At3g12480 CCAAT-HAP5 0.65 0.46
At3g48590 CCAAT-HAP5 0.52 0.54
At5g14140 C2H2 −0.05 1.09
At5g27910 CCAAT-HAP5 −1.06 1.11
At5g38140 CCAAT-HAP5 −0.17 −0.05
At5g18240 GARP-G2-like 0.09 0.67
At5g29000 GARP-G2-like 0.10 0.92
At2g02540 HB 0.05 0.06
At5g42630 GARP-G2-like −1.15 0.23
At2g16400 HB 0.65 0.56
At5g44190 GARP-G2-like 0.01 0.22
At5g45580 GARP-G2-like −0.96 0.18
At2g18550 HB −1.44 1.14
At5g59570 GARP-G2-like 0.60 0.87
At2g22430 HB 1.79 1.63
At2g22800 HB 0.69 0.49
At1g44810 GeBP −0.70 0.32
At2g23760 HB 0.03 0.55
At1g61730 GeBP 0.28 0.49
At2g27990 HB −1.10 0.32
At2g28610 HB −0.64 0.68
At2g25650 GeBP −0.03 0.63
At5g16470 C2H2 −0.01 0.53
At5g43250 CCAAT-HAP5 −0.08 0.78
At5g16540 C2H2 0.15 0.85
At5g50470 CCAAT-HAP5 1.23 0.96
At5g18550 C2H2 1.57 0.12
At5g50480 CCAAT-HAP5 1.61 0.40
At5g63470 CCAAT-HAP5 −0.08 0.94
At5g25160 C2H2 −1.33 −0.40
At5g26610 C2H2 0.09 0.31
At4g01350 CHP-rich −0.70 2.21
At5g37890 C2H2 0.30 0.61
At5g39550 C2H2 0.42 0.01
At2g20110 CPP(Zn) 0.14 −0.03
At3g04850 CPP(Zn) −0.01 0.08
At5g40710 C2H2 −0.13 0.95
At3g16160 CPP(Zn) −0.23 0.67
At2g36340 GeBP −0.40 0.23
At3g04930 GeBP 0.10 0.87
At2g34710 HB 1.04 0.32
At4g00250 GeBP −1.42 2.65
At2g35940 HB 0.53 0.95
At4g00270 GeBP 0.08 1.08
At2g36610 HB −3.29 1.15
At4g00270 GeBP −0.40 0.57
At2g44910 HB −0.16 −0.13
At4g00390 GeBP 0.62 1.34
At2g46680 HB 1.05 1.08
At3g01220 HB 0.78 1.01
At3g01470 HB 0.33 0.28
At4g25210 GeBP 0.14 0.80
At5g14280 GeBP 0.06 0.25
At3g03660 HB 0.86 0.97
At5g28040 GeBP 0.49 0.46
At3g11260 HB 0.27 −0.71
At5g28040 GeBP 0.46 0.71
At3g18010 HB 0.78 1.05
At3g22760 CPP(Zn) −0.35 0.13
At5g43170 C2H2 0.48 1.24
At3g22780 CPP(Zn) 0.13 0.19
At5g43540 C2H2 −1.44 1.69
At4g14770 CPP(Zn) 0.27 0.00
At5g44160 C2H2 0.35 0.50
At4g29000 CPP(Zn) 0.27 0.47
At5g25790 CPP(Zn) 0.21 1.24
At5g52010 C2H2 0.11 0.44
At1g47870 E2F/DP 0.33 0.46
At2g36010 E2F/DP 0.62 0.57
At3g01330 E2F/DP −0.37 −0.25
At5g54630 C2H2 −0.29 0.21
At3g48160 E2F/DP −0.08 0.23
At5g56200 C2H2 −3.54 3.86
At5g02470 E2F/DP −0.34 1.65
At5g57520 C2H2 −1.45 −0.52
At5g03415 E2F/DP 0.41 0.22
At5g59820 C2H2 1.49 4.74
At5g14960 E2F/DP 1.08 0.27
At1g05055 General Transcription 0.47 0.27
At3g19510 HB −0.08 0.11
At4g26170 General Transcription −0.18 0.70
At3g49530 HB 1.86 2.55
At1g01160 GIF 0.22 0.35
At4g00850 GIF 0.69 1.16
At5g28640 GIF −0.23 0.13
At1g07520 GRAS 1.57 2.32
At3g56560 HB 1.09 2.02
At1g07530 GRAS 0.23 0.71
At3g60390 HB 0.53 1.21
At1g14920 GRAS 0.18 −0.11
At3g61150 HB 0.73 0.72
At1g21450 GRAS 0.23 1.07
At3g61890 HB 1.26 1.68
At1g50420 GRAS 0.21 0.69
At1g50600 GRAS 0.17 0.95
At4g00730 HB 0.50 0.57
At5g60470 C2H2 −0.13 1.25
At5g22220 E2F/DP 0.47 0.72
At1g73730 EIL 1.23 0.52
At5g63280 C2H2 −0.03 0.21
At2g27050 EIL −0.16 0.35
At5g64610 C2H2 −0.18 0.52
At3g20770 EIL 0.08 0.88
At5g66730 C2H2 0.28 0.22
At5g67450 C2H2 2.15 3.36
At1g32360 C3H 0.19 0.70
At1g60700 FHA −0.01 0.07
At1g68200 C3H 0.27 0.51
At2g19810 C3H 0.75 1.30
At3g07220 FHA 0.37 0.45
At2g25900 C3H −0.44 0.97
At3g07260 FHA −0.25 4.25
At2g35430 C3H 0.11 0.74
At3g54350 FHA 0.28 0.42
At1g55580 GRAS −0.24 −1.77
At4g01520 HB 0.88 1.90
At1g63100 GRAS −0.14 −0.04
At4g01550 HB −0.43 1.47
At1g66350 GRAS −0.06 0.34
At4g02560 HB 0.48 0.40
At2g01570 GRAS 0.21 0.34
At4g03250 HB 0.32 0.63
At2g04890 GRAS −0.18 0.67
At4g04890 HB 0.38 0.19
At2g37650 GRAS 0.28 0.40
At2g45160 GRAS 0.09 0.04
At4g16780 HB 0.80 1.65
At3g03450 GRAS −0.19 0.08
At4g17460 HB −1.60 −0.47
At3g13840 GRAS 0.16 1.57
At3g46600 GRAS 1.92 2.71
At4g21750 HB 0.60 0.64
At3g49950 GRAS 0.50 −0.70
At2g40140 C3H 3.19 3.95
At2g41900 C3H 0.16 0.46
At1g67710 GARP-ARR-B −0.71 0.17
At3g06410 C3H 0.98 0.96
At2g01760 GARP-ARR-B −0.85 0.18
At3g12130 C3H 0.44 0.68
At2g25180 GARP-ARR-B 0.26 −0.07
At3g12680 C3H 0.33 0.26
At3g16857 GARP-ARR-B 0.16 −0.01
At3g19360 C3H 0.64 0.38
At3g48440 C3H 0.68 0.39
At4g16110 GARP-ARR-B −0.01 0.37
At3g51120 C3H −0.03 0.35
At4g31920 GARP-ARR-B −0.21 0.10
At3g55980 C3H 0.90 3.97
At5g07210 GARP-ARR-B 1.57 0.85
At4g00305 C3H 0.46 0.93
At4g01020 C3H 0.93 0.40
At4g29190 C3H 0.72 1.36
At1g13300 GARP-G2-like 1.44 0.56
At3g50650 GRAS 0.15 −0.27
At4g29940 HB 0.07 0.46
At3g54220 GRAS 0.61 0.37
At4g32040 HB 0.01 0.84
At3g60630 GRAS 0.16 0.50
At4g32880 HB 1.66 0.24
At4g00150 GRAS 0.57 0.58
At4g32980 HB −0.66 0.12
At4g08250 GRAS 2.11 2.28
At4g34610 HB 0.27 0.20
At4g17230 GRAS 4.77 2.92
At4g35550 HB 0.22 0.40
At4g36710 GRAS 0.22 0.75
At4g37650 GRAS 0.29 0.47
At4g36870 HB 0.11 0.05
At5g17490 GRAS 0.26 1.26
At4g37790 HB 1.19 1.58
At5g41920 GRAS 0.10 0.47
At4g40060 HB −0.01 0.70
At5g48150 GRAS 0.42 0.67
At5g02030 HB 0.12 0.55
At5g52510 GRAS 0.08 0.98
At5g03790 HB −0.21 0.18
At5g06420 C3H −0.39 0.04
At1g14600 GARP-G2-like 0.32 0.97
At5g06770 C3H 0.55 0.30
At1g25550 GARP-G2-like 1.12 1.73
At5g07060 C3H 0.17 1.35
At1g32240 GARP-G2-like 0.08 0.67
At5g07500 C3H 0.91 2.80
At1g49560 GARP-G2-like −0.29 0.60
At5g12850 C3H 1.02 0.22
At1g68670 GARP-G2-like 0.47 1.19
At5g44260 C3H −0.37 −0.47
At1g69580 GARP-G2-like 0.03 0.48
At5g58620 C3H 1.06 1.15
At1g79430 GARP-G2-like 0.39 0.03
At4g16150 CAMTA 0.23 1.05
At2g01060 GARP-G2-like 0.56 0.68
At1g67310 CAMTA 0.52 0.74
At2g02060 GARP-G2-like 0.25 0.47
At1g67910 CAMTA 0.33 0.68
At2g03500 GARP-G2-like 0.93 −0.19
At2g22300 CAMTA 0.44 1.20
At2g20400 GARP-G2-like 0.26 0.40
At2g22900 CAMTA −0.41 0.60
At2g20570 GARP-G2-like 0.51 0.46
At5g59450 GRAS 1.21 1.78
At5g66770 GRAS −0.12 −0.01
At5g06710 HB 0.66 0.31
At2g06200 GRF −1.16 −1.07
At5g11060 HB 0.00 0.76
At2g22840 GRF 0.20 −0.25
At5g11270 HB 0.13 0.33
At2g36400 GRF 0.03 0.56
At5g15150 HB −1.34 −0.12
At2g45480 GRF −0.05 −0.23
At3g13960 GRF 0.16 0.03
At3g52910 GRF −0.03 0.64
At5g19520 HB −1.33 1.17
At4g24150 GRF 0.35 0.22
At5g25220 HB 0.55 1.12
At4g37740 GRF 0.97 −0.01
At5g53660 GRF −1.00 1.00
At5g46880 HB 1.22 0.16
At1g05230 HB 0.28 0.17
At5g60690 HB 0.21 0.33
At3g16940 CAMTA 1.12 1.06
At2g38300 GARP-G2-like 0.10 0.95
At5g09410 CAMTA 0.51 0.60
At2g40260 GARP-G2-like 0.10 0.09
At5g64220 CAMTA 0.29 0.82
At2g40970 GARP-G2-like 0.23 0.85
At5g08190 CCAAT-DR1 0.01 0.22
At5g23090 CCAAT-DR1 −0.08 0.65
At3g04030 GARP-G2-like 0.06 −0.23
At1g17590 CCAAT-HAP2 0.04 0.59
At3g04450 GARP-G2-like −0.09 0.61
At1g30500 CCAAT-HAP2 0.08 0.60
At3g10760 GARP-G2-like −0.58 −0.19
At1g54160 CCAAT-HAP2 0.71 −0.27
At3g12730 GARP-G2-like 0.35 −0.04
At1g72830 CCAAT-HAP2 −0.59 0.48
At3g13040 GARP-G2-like −0.06 0.79
At2g34720 CCAAT-HAP2 0.51 0.77
At3g05690 CCAAT-HAP2 0.08 −0.43
At3g24120 GARP-G2-like 0.25 0.59
At1g17920 HB −0.71 −0.02
At1g20693 HMG 0.09 0.62
At1g19700 HB 0.25 0.60
At1g20696 HMG 0.12 0.51
At1g20700 HB 0.24 0.40
At2g17560 HMG 0.01 0.52
At2g34450 HMG 0.28 0.23
At1g23380 HB −0.88 1.05
At3g28730 HMG 0.80 0.27
At1g26960 HB −0.45 1.02
At3g51880 HMG 0.10 0.53
At1g27050 HB 0.49 0.55
At4g11080 HMG −0.35 0.29
At1g28420 HB −0.31 0.62
At4g23800 HMG 0.21 −0.23
At1g30490 HB 0.09 −0.23
At4g35570 HMG 0.18 0.53
At5g23420 HMG 0.00 0.63
At1g46480 HB −0.16 0.19
At5g56780 HRT-like −0.12 0.31
At1g32330 HSF 0.43 0.53
At1g46264 HSF −0.15 −0.27
At1g67970 HSF 1.40 2.26
At3g54340 MADS −0.63 −1.55
At1g74250 HSF 0.02 0.25
At3g57230 MADS 0.04 0.67
At1g77570 HSF 0.15 1.19
At3g57390 MADS −0.14 0.40
At2g26150 HSF 0.06 0.46
At3g58780 MADS −0.13 0.61
At3g02990 HSF 0.97 1.27
At3g24520 HSF 2.41 2.91
At4g11250 MADS 3.71 2.40
At5g02320 MYB 0.03 0.74
At5g03780 MYB −0.17 0.43
At1g73410 MYB 0.81 −0.27
At5g04110 MYB 0.04 0.24
At1g74080 MYB −1.03 2.02
At5g06100 MYB 0.33 0.38
At1g74430 MYB −0.15 1.02
At5g06110 MYB 0.30 0.61
At1g74650 MYB −0.10 0.98
At5g07690 MYB −0.55 0.45
At1g79180 MYB 0.43 1.73
At5g07700 MYB −0.27 0.92
At2g02820 MYB −0.09 0.79
At5g10280 MYB 0.85 0.40
At2g03470 MYB −0.26 0.94
At5g11510 MYB 0.34 0.01
At3g51910 HSF 0.45 0.79
At4g11880 MADS −1.34 0.22
At4g18960 MADS −0.27 −0.42
At4g11660 HSF 0.41 0.50
At4g22950 MADS −0.32 −0.37
At4g13980 HSF −0.12 −0.47
At4g24540 MADS 0.11 0.42
At4g17600 HSF 0.15 0.65
At4g36590 MADS −1.41 1.10
At4g17750 HSF 0.42 0.38
At4g37940 MADS −0.17 1.43
At4g18880 HSF 0.70 2.89
At5g10140 MADS −1.26 0.83
At4g36990 HSF 0.06 1.02
At5g13790 MADS −0.09 0.52
At5g03720 HSF 0.69 1.22
At5g15800 MADS 0.06 −2.27
At5g16820 HSF 0.53 0.95
At5g20240 MADS −1.28 −3.08
At2g16720 MYB 0.32 1.27
At5g14750 MYB −1.85 0.49
At2g23290 MYB −1.90 −1.21
At5g15310 MYB 0.05 0.29
At5g16600 MYB 0.75 0.84
At5g16770 MYB 0.76 −0.23
At5g17800 MYB −0.71 −0.65
At2g31180 MYB −0.09 1.35
At5g18620 MYB 0.93 −1.05
At5g23000 MYB −0.74 −2.44
At2g33610 MYB −0.16 0.22
At5g23650 MYB 0.40 −0.73
At2g36890 MYB −0.40 1.54
At5g26660 MYB −0.40 1.47
At2g36960 MYB 0.12 0.37
At5g35550 MYB −0.24 −0.93
At2g37630 MYB 1.40 0.21
At5g43840 HSF 1.08 1.36
At5g23260 MADS 0.00 2.43
At5g45710 HSF 0.21 0.73
At5g26630 MADS −0.68 0.91
At5g62020 HSF 0.86 1.65
At1g08620 JUMONJI 0.44 0.43
At5g26870 MADS −0.06 1.91
At1g30810 JUMONJI 0.82 0.40
At5g26950 MADS 1.01 −2.59
At5g27050 MADS 0.51 3.03
At5g27070 MADS −0.01 1.39
At2g38950 JUMONJI 0.36 0.45
At3g20810 JUMONJI 1.48 0.30
At3g48430 JUMONJI 0.64 0.46
At5g27580 MADS 0.09 −0.58
At2g39880 MYB −0.19 −0.40
At5g40330 MYB 0.07 0.38
At2g42150 MYB 0.15 1.82
At2g44430 MYB 0.23 0.22
At5g40360 MYB 1.31 0.44
At2g47190 MYB 0.30 2.58
At2g47210 MYB 0.52 0.58
At5g41020 MYB 0.10 0.26
At2g47460 MYB −1.20 1.24
At5g45420 MYB −0.21 0.71
At2g47620 MYB −0.10 0.15
At5g47290 MYB 2.40 1.34
At3g01140 MYB −0.14 0.93
At5g49330 MYB 0.40 0.53
At3g01530 MYB 1.43 1.13
At5g52260 MYB −0.05 2.22
At3g05380 MYB 0.92 −0.13
At5g52600 MYB −1.74 −1.43
At3g06490 MYB −2.33 1.21
At5g54230 MYB −0.96 −1.03
At5g04240 JUMONJI −0.05 0.65
At5g46910 JUMONJI 0.88 1.37
At5g37415 MADS −1.00 3.14
At5g63080 JUMONJI −0.08 0.56
At1g01780 LIM 0.92 0.41
At1g10200 LIM 0.03 0.71
At2g39900 LIM −0.17 0.21
At2g45800 LIM 0.19 0.84
At3g55770 LIM −0.45 0.57
At5g48670 MADS −0.47 0.54
At4g32551 LUG 0.14 0.39
At5g49420 MADS 0.51 0.07
At5g65070 MADS −0.07 0.94
At5g51860 MADS 1.09 0.89
At3g08500 MYB −0.72 −0.10
At5g55020 MYB 2.33 5.47
At3g09370 MYB 0.32 0.47
At3g10113 MYB −0.54 −0.73
At3g11440 MYB 0.67 0.76
At5g60890 MYB 0.94 1.21
At3g11450 MYB −0.14 1.07
At5g61420 MYB −0.22 0.34
At3g12560 MYB 0.20 0.13
At5g62320 MYB 0.21 1.80
At5g62470 MYB 1.39 2.19
At3g12820 MYB −0.50 −0.05
At5g65230 MYB 0.79 1.02
At3g13540 MYB 0.80 1.04
At5g67300 MYB 0.70 1.61
At1g18750 MADS 0.75 0.66
At1g22590 MADS 0.89 0.28
At5g60440 MADS −0.25 0.00
At1g24260 MADS −0.54 −0.31
At5g60910 MADS 0.69 0.02
At5g62165 MADS −1.47 −1.31
At1g28450 MADS −1.54 1.09
At5g65050 MADS 0.05 0.25
At1g28460 MADS −0.17 1.43
At5g65060 MADS 0.51 0.20
At1g29960 MADS −0.15 0.61
At5g65080 MADS 0.62 −0.97
At2g42680 MBF1 −0.05 0.84
At3g24500 MBF1 −0.19 0.35
At3g15320 MYB −0.12 0.63
At1g01060 MYB-related 0.19 0.95
At3g18100 MYB 0.27 0.44
At1g01380 MYB-related −0.22 0.91
At3g23250 MYB 2.02 4.29
At1g01520 MYB-related 1.62 1.67
At1g09770 MYB-related 0.41 0.38
At3g27220 MYB −1.04 −0.13
At1g15720 MYB-related 0.34 0.39
At1g17460 MYB-related 0.71 0.61
At3g27810 MYB 0.79 1.76
At3g27920 MYB 0.15 0.47
At1g18330 MYB-related −0.49 −0.63
At1g19000 MYB-related −0.21 1.13
At3g28910 MYB 0.20 0.99
At1g49950 MYB-related −0.08 0.73
At1g70000 MYB-related −0.29 0.22
At1g71030 MYB-related −0.27 0.77
At1g33070 MADS 0.19 1.12
At3g58680 MBF1 0.11 0.85
At1g47760 MADS −0.02 0.30
At1g06180 MYB 0.39 0.55
At1g48150 MADS −3.43 1.85
At1g06910 MYB 0.95 1.06
At1g54760 MADS 3.53 −1.70
At1g59810 MADS −0.54 0.67
At1g08810 MYB −0.22 0.30
At1g09540 MYB 2.23 1.43
At1g09710 MYB 0.83 −1.33
At1g13880 MYB −0.17 0.99
At1g14350 MYB 0.09 0.63
At1g16490 MYB −0.25 0.85
At1g17950 MYB 0.48 0.55
At3g46130 MYB −0.32 −0.09
At1g72650 MYB-related −0.27 0.56
At3g47600 MYB 0.27 0.89
At1g72740 MYB-related 0.41 0.92
At3g47680 MYB 0.34 0.06
At1g74840 MYB-related 0.11 0.96
At3g48920 MYB 2.56 2.79
At1g75250 MYB-related 0.57 0.81
At3g49690 MYB 0.14 0.48
At2g21650 MYB-related 0.06 0.47
At3g50060 MYB 0.62 1.24
At3g52250 MYB 0.16 0.70
At2g30420 MYB-related 0.31 −0.02
At2g38090 MYB-related −0.26 0.52
At3g55730 MYB −0.11 0.52
At2g46410 MYB-related −0.19 0.79
At3g57980 MYB 0.10 0.08
At2g46830 MYB-related 0.09 0.65
At3g60460 MYB 2.21 −1.95
At3g09600 MYB-related 0.08 0.46
At3g61250 MYB −0.69 −0.17
At1g18570 MYB 1.43 3.26
At1g69540 MADS 0.14 0.11
At1g18710 MYB 1.17 2.64
At1g71692 MADS −0.65 1.13
At1g18960 MYB 0.33 2.42
At1g19510 MYB 0.08 0.54
At1g77080 MADS −0.16 0.37
At1g21700 MYB 0.00 0.32
At1g22640 MYB 0.33 1.00
At2g03060 MADS 1.28 0.51
At1g26580 MYB −0.08 0.26
At2g03710 MADS −0.02 0.89
At2g14210 MADS 0.85 −0.08
At2g22540 MADS −0.03 0.50
At3g10590 MYB-related −1.36 0.27
At3g11280 MYB-related −0.04 0.62
At4g01680 MYB −0.95 0.94
At3g16350 MYB-related 1.18 0.64
At4g01980 MYB 1.15 −0.75
At3g24870 MYB-related −0.34 0.16
At4g05100 MYB 1.03 2.63
At3g49850 MYB-related −0.32 0.38
At4g09460 MYB 0.75 1.86
At4g01060 MYB-related −0.77 0.32
At4g12350 MYB 1.00 0.22
At4g01280 MYB-related 0.45 0.96
At4g16420 MYB 0.12 0.48
At4g11400 MYB-related 0.16 0.67
At4g36570 MYB-related −0.93 0.12
At4g17785 MYB 0.95 1.66
At4g39250 MYB-related 1.23 −0.59
At5g01200 MYB-related −0.30 0.17
At1g48000 MYB 0.32 3.79
At1g49010 MYB 0.04 −0.22
At2g26880 MADS 1.64 0.81
At1g56650 MYB −0.73 3.60
At2g28700 MADS −1.04 1.44
At1g57560 MYB 0.14 1.31
At2g34440 MADS 0.35 0.09
At1g58220 MYB 0.97 0.51
At1g63910 MYB 0.06 −0.06
At2g42830 MADS −2.35 −1.26
At1g66230 MYB −0.64 0.17
At2g45650 MADS 1.77 −2.34
At2g45660 MADS 0.07 0.45
At1g66380 MYB 0.89 5.32
At3g02310 MADS 5.56 −3.02
At1g66390 MYB 0.04 −0.20
At4g21440 MYB 1.72 2.48
At5g02840 MYB-related −0.12 0.57
At4g22680 MYB 0.57 1.29
At5g04760 MYB-related 0.64 1.18
At5g05790 MYB-related −0.26 0.39
At4g26930 MYB −1.50 2.20
At5g08520 MYB-related 0.58 −0.03
At4g28110 MYB 1.18 2.55
At5g17300 MYB-related 0.42 1.05
At4g32730 MYB 0.83 0.08
At5g37260 MYB-related 2.68 3.28
At4g34990 MYB 0.24 0.09
At5g52660 MYB-related 0.73 1.50
At4g37260 MYB 0.31 1.47
At5g53200 MYB-related 0.34 0.57
At5g56840 MYB-related −0.33 0.62
At4g38620 MYB 0.41 0.47
At5g58900 MYB-related 0.09 0.41
At5g47370 NAC 0.73 0.99
At5g67580 MYB-related −0.17 0.60
At1g01010 NAC 0.48 1.17
At5g53950 NAC 1.56 −1.00
At1g01720 NAC 2.88 2.70
At5g53980 NAC 0.30 −0.46
At5g56620 NAC 0.93 1.00
At1g02220 NAC −0.30 0.77
At5g59340 HB 2.22 1.42
At5g61430 NAC 0.49 −0.05
At5g62380 NAC 0.14 0.82
At5g63790 NAC 1.41 3.14
At1g12260 NAC 9.20 0.96
At5g64060 NAC −0.12 −0.11
At5g64530 NAC 0.08 1.20
At1g19790 SRS −0.88 −0.17
At2g18120 SRS 0.43 0.73
At1g66600 WRKY 0.53 1.60
At2g21400 SRS −0.27 1.28
At1g69310 WRKY 0.63 0.51
At3g54430 SRS −0.14 0.26
At1g69810 WRKY 0.89 1.49
At4g36260 SRS 0.33 0.12
At5g12330 SRS −2.00 0.13
At1g80840 WRKY 1.49 6.06
At5g33210 SRS 0.21 0.79
At2g03340 WRKY 0.12 0.13
At5g66350 SRS −0.18 0.07
At2g04880 WRKY 0.04 0.72
At1g05690 TAZ −0.02 0.84
At1g25580 NAC 0.08 0.68
At5g65310 NAC −0.10 0.20
At5g66300 NAC 0.03 0.77
At1g28470 NAC −0.82 0.54
At1g32510 NAC 0.43 0.42
At5g39690 NAM 1.18 1.50
At5g50820 NAM 0.53 0.50
At1g32870 NAC 0.38 0.81
At1g33060 NAC 0.16 0.31
At1g20640 NIN-like 0.52 −0.06
At1g34180 NAC 0.22 0.15
At1g64530 NIN-like 0.25 0.25
At1g34190 NAC 0.11 0.92
At1g74480 NIN-like −2.56 1.54
At1g52880 NAC −0.10 0.56
At1g76350 NIN-like −0.30 0.48
At1g52890 NAC 2.82 3.69
At2g17150 NIN-like 0.82 −0.12
At4g37610 TAZ 0.17 2.27
At2g23320 WRKY 2.07 3.14
At5g63160 TAZ 2.00 2.10
At2g24570 WRKY 0.55 0.82
At5g67480 TAZ −0.44 1.05
At2g25000 WRKY −0.33 0.07
At1g30210 TCP −0.05 0.41
At2g30250 WRKY 0.63 2.13
At1g35560 TCP 0.03 0.91
At2g30590 WRKY −0.44 0.40
At1g53230 TCP 0.24 0.83
At1g58100 TCP 0.14 0.37
At2g37260 WRKY −0.50 0.63
At1g67260 TCP −2.70 −0.70
At2g38470 WRKY 1.50 5.33
At1g68800 TCP −0.10 1.83
At2g40740 WRKY 0.70 −0.15
At1g69690 TCP −0.80 0.28
At2g40750 WRKY 0.49 0.37
At1g72010 TCP 0.43 0.61
At2g44745 WRKY −1.08 0.27
At2g31070 TCP 0.01 0.02
At1g54330 NAC −0.82 0.42
At2g43500 NIN-like 0.60 1.64
At1g56010 NAC −0.50 0.39
At2g43500 NIN-like 0.46 0.49
At3g59580 NIN-like −0.41 0.14
At4g24020 NIN-like 0.79 0.45
At4g35270 NIN-like 0.54 0.54
At4g35590 NIN-like 0.71 0.81
At1g62700 NAC 0.10 1.52
At1g64105 NAC −0.07 0.47
At1g65910 NAC 0.50 0.67
At4g27330 NZZ 1.25 −5.05
At2g37000 TCP 0.43 0.10
At2g46400 WRKY 1.44 4.82
At2g45680 TCP −0.06 −0.07
At2g47260 WRKY 0.30 0.53
At3g02150 TCP −0.14 1.23
At3g01080 WRKY −0.10 1.38
At3g15030 TCP −0.20 −0.06
At3g01970 WRKY 0.53 1.93
At3g04670 WRKY −0.07 0.62
At3g27010 TCP 0.50 1.13
At3g56400 WRKY 0.86 1.42
At3g58710 WRKY 0.79 0.92
At3g47620 TCP 0.33 0.89
At4g18390 TCP 0.17 0.44
At4g01250 WRKY 2.23 2.87
At5g08070 TCP 0.09 0.22
At4g01720 WRKY 2.13 1.22
At5g08330 TCP −0.52 −0.21
At4g04450 WRKY 0.96 −0.24
At5g23280 TCP −0.67 0.09
At1g69490 NAC 2.94 4.59
At1g71930 NAC 0.51 0.16
At5g35770 Orphan (SAP) −2.53 −1.58
At1g76420 NAC −3.79 −0.14
At1g14410 PBF-2-like(Whirly) 0.60 0.20
At1g77450 NAC 2.40 2.71
At1g71260 PBF-2-like(Whirly) 0.05 0.22
At2g02740 PBF-2-like(Whirly) 0.00 0.35
At2g02450 NAC 0.98 1.08
At1g05380 PHD finger 0.18 0.22
At2g36720 PHD finger 0.04 0.40
At2g18060 NAC 0.14 −0.31
At3g14980 PHD finger −0.05 0.09
At2g24430 NAC 2.76 2.38
At3g53680 PHD finger 0.29 0.79
At2g27300 NAC −0.16 1.23
At4g14920 PHD finger 0.70 0.50
At2g33480 NAC −1.81 0.06
At5g12400 PHD finger 0.91 0.58
At2g43000 NAC 0.92 1.67
At5g22260 PHD finger 4.59 0.75
At5g41030 TCP 0.84 1.27
At4g12020 WRKY 0.71 0.40
At5g51910 TCP −0.29 0.09
At4g18170 WRKY 1.99 3.02
At5g60970 TCP 0.14 0.27
At1g13450 Trihelix 0.07 0.60
At4g23550 WRKY −0.28 −0.03
At1g21200 Trihelix −0.14 0.45
At4g23810 WRKY 3.77 4.73
At4g24240 WRKY 0.88 1.69
At1g31310 Trihelix 0.89 0.55
At1g33240 Trihelix −0.65 −0.47
At4g26640 WRKY 1.45 −0.24
At1g54060 Trihelix −0.26 0.43
At4g30935 WRKY 0.11 0.42
At1g76880 Trihelix 0.98 0.08
At4g31550 WRKY 2.07 2.38
At1g76890 Trihelix −0.54 −0.10
At4g31800 WRKY 1.41 2.71
At2g33550 Trihelix 0.61 0.52
At4g39410 WRKY −0.03 0.99
At5g35210 PHD finger 0.07 0.70
At3g01600 NAC −0.70 1.83
At3g03200 NAC −2.55 0.74
At5g58610 PHD finger −1.39 −1.08
At3g04060 NAC 0.37 0.02
At3g04070 NAC −0.45 0.76
At1g21000 PLATZ 0.65 1.67
At1g31040 PLATZ −1.87 0.25
At3g04420 NAC −0.17 0.64
At1g32700 PLATZ −0.16 1.10
At1g43000 PLATZ 2.53 3.44
At3g10480 NAC 0.88 0.14
At1g76590 PLATZ 1.42 1.77
At3g10490 NAC 0.81 0.07
At2g27930 PLATZ 1.89 1.39
At3g10500 NAC 0.26 0.94
At3g60670 PLATZ −0.09 0.31
At3g15170 NAC 0.95 −2.63
At4g17900 PLATZ 1.01 1.84
At2g35640 Trihelix 2.40 2.93
At5g01900 WRKY 1.78 5.60
At2g38250 Trihelix 0.84 0.37
At5g07100 WRKY 2.13 1.12
At2g44730 Trihelix 0.14 0.61
At3g01560 Trihelix 1.10 0.47
At5g22570 WRKY 0.59 1.16
At3g10040 Trihelix −1.27 −0.35
At5g24110 WRKY 1.46 4.27
At3g11100 Trihelix −0.20 0.44
At5g26170 WRKY −0.25 2.65
At3g14180 Trihelix 0.07 0.81
At5g28650 WRKY −0.01 −0.61
At3g19020 Trihelix 1.43 1.18
At3g24490 Trihelix −0.22 0.42
At5g43290 WRKY 0.27 0.87
At3g24860 Trihelix −0.07 0.35
At5g45050 WRKY 0.37 0.28
At3g25990 Trihelix 0.10 0.31
At5g45270 WRKY 0.76 0.96
At3g15500 NAC 2.51 3.62
At5g46710 PLATZ 1.85 2.23
At3g15510 NAC 0.51 0.57
At3g17730 NAC 0.40 1.19
At4g02020 Polycomb Group (PcG) 0.28 0.50
At3g29035 NAC −0.40 1.40
At4g16845 Polycomb Group (PcG) −0.08 0.09
At5g51230 Polycomb Group (PcG) 0.26 0.22
At3g27700 RRM-containing 0.52 0.78
At4g01540 NAC 0.33 2.07
At3g47120 RRM-containing 0.11 0.39
At4g27410 NAC 1.65 3.18
At2g37120 S1Fa-like −1.00 0.63
At4g28500 NAC −0.19 −0.07
At3g53370 S1Fa-like 0.11 0.66
At4g28530 NAC −0.38 0.93
At1g02065 SBP 0.44 −0.72
At3g54390 Trihelix −0.39 −0.11
At5g46350 WRKY 0.26 1.24
At3g58630 Trihelix 0.00 0.16
At5g49520 WRKY 1.74 2.73
At4g17050 Trihelix −0.24 0.41
At5g52830 WRKY 0.93 1.22
At4g31270 Trihelix −0.37 0.59
At5g56270 WRKY −0.06 −0.03
At5g01380 Trihelix −0.10 2.40
At5g64810 WRKY 0.78 2.26
At5g03680 Trihelix −0.41 0.87
At1g14440 ZF-HD −0.18 −0.17
At5g05550 Trihelix −0.01 0.38
At1g14687 ZF-HD 0.06 0.36
At5g14540 Trihelix 3.11 0.00
At5g28300 Trihelix −0.18 −0.58
At1g74660 ZF-HD −0.26 0.00
At5g38560 Trihelix 0.48 0.69
At1g75240 ZF-HD −0.45 −0.13
At5g47660 Trihelix 0.02 0.15
At2g02540 ZF-HD −0.10 0.60
At5g63430 Trihelix 0.35 0.47
At2g18350 ZF-HD 0.34 0.27
At4g35580 NAC 0.59 0.36
At1g20980 SBP 0.39 0.60
At4g36160 NAC 0.08 1.12
At1g27360 SBP 0.91 0.64
At5g04400 NAC 1.31 1.79
At1g27370 SBP 0.56 0.01
At5g04410 NAC 0.21 0.52
At1g53160 SBP −0.51 −0.46
At5g07680 NAC −0.71 −0.44
At1g69170 SBP −0.24 0.19
At5g08790 NAC 1.56 1.81
At2g33810 SBP −0.01 0.12
At5g09330 NAC 0.76 0.34
At2g42200 SBP −0.45 −0.37
At5g13180 NAC −0.45 0.17
At2g47070 SBP 0.22 0.60
At5g14000 NAC −0.57 −0.15
At3g15270 SBP −0.51 −0.35
At3g57920 SBP 0.27 −0.36
At5g17260 NAC 0.22 0.79
At3g60030 SBP 0.22 0.30
At5g18270 NAC 0.31 0.84
At5g18830 SBP 0.04 0.26
At1g16070 TUB −0.19 −0.25
At3g28920 ZF-HD 0.06 0.23
At1g25280 TUB 0.80 0.36
At3g50890 ZF-HD −0.47 −0.58
At4g24660 ZF-HD −0.36 −0.01
At1g47270 TUB 0.35 0.68
At5g15210 ZF-HD −0.12 0.01
At5g39760 ZF-HD 0.84 0.07
At5g42780 ZF-HD −0.17 −0.33
At1g76900 TUB 1.50 0.46
At2g18280 TUB 0.19 0.55
At5g65410 ZF-HD 1.11 0.15
At2g47900 TUB 1.25 0.11
At1g17380 ZIM 1.91 3.30
At3g06380 TUB −0.02 0.64
At1g19180 ZIM 2.60 4.54
At5g18680 TUB −0.10 0.44
At1g30135 ZIM −0.37 2.56
At1g48500 ZIM 1.18 0.17
At5g18300 NAC −0.83 −0.13
At5g43270 SBP −0.64 −0.77
At5g22290 NAC 0.28 1.92
At5g50570 SBP 0.26 1.42
At5g22380 NAC 3.76 4.76
At5g50670 SBP 0.30 0.91
At5g24590 NAC 1.15 1.53
At1g05830 SET-domain 0.18 −0.06
At5g39610 NAC 0.19 2.46
At2g31650 SET-domain 0.27 0.57
At5g39820 NAC 1.91 0.05
At4g27910 SET-domain 0.29 0.60
At5g41410 NAC 0.08 −0.03
At4g30860 SET-domain −0.13 0.71
At5g09790 SET-domain 0.48 0.50
At5g24330 SET-domain −0.05 0.27
At5g46590 NAC 0.08 1.50
At5g53430 SET-domain 0.30 0.17
At4g28190 ULT −0.26 0.02
At1g70700 ZIM 0.14 1.73
At1g28520 VOZ 0.32 0.75
At1g72450 ZIM −0.27 1.16
At2g42400 VOZ 0.24 0.44
At1g74950 ZIM 0.27 0.93
At2g34600 ZIM −1.53 3.07
At3g17860 ZIM 0.10 1.25
At1g29280 WRKY −0.40 2.45
At3g43440 ZIM 0.15 0.16
At1g29860 WRKY −0.16 1.03
At4g14713 ZIM 0.94 −0.11
At4g14720 ZIM −0.01 0.21
At4g32570 ZIM 0.50 0.50
At1g62300 WRKY 2.04 2.08
At5g13220 ZIM 0.10 1.75
At5g20900 ZIM 0.22 1.13

Values are means of two biological replicates.

References

  1. Apel K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 10.1146/annurev.arplant.55.031903.141701 [DOI] [PubMed] [Google Scholar]
  2. Asada K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their fuction. Plant Physiol. 141, 391–396 10.1104/pp.106.082040 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baier M., Dietz K.-J. (2005). Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in context of plant physiology. J. Exp. Bot. 56, 1449–1462 10.1093/jxb/eri161 [DOI] [PubMed] [Google Scholar]
  4. Balazadeh S., Riaño-Pachón D. M., Mueller-Roeber B. (2008). Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol. 1, 63–75 10.1111/j.1438-8677.2008.00088.x [DOI] [PubMed] [Google Scholar]
  5. Bednarek P., Pislewska-Bednarek M., Svatos A., Schneider B., Doubsky J., Mansurova M., et al. (2009). A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323, 101–106 10.1126/science.1163732 [DOI] [PubMed] [Google Scholar]
  6. Bienert G. P., Møller A. L., Kristiansen K. A., Schulz A., Møller I. M., Schjoerring J. K., et al. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183–1192 10.1074/jbc.M603761200 [DOI] [PubMed] [Google Scholar]
  7. Birkenbihl R. P., Diezel C., Somssich I. E. (2012). Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol. 159, 266–285 10.1104/pp.111.192641 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Caldana C., Scheible W. R., Mueller-Roeber B., Ruzicic S. (2007). A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Meth. 3, 7 10.1186/1746-4811-3-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chico J. M., Chini A., Fonseca S., Solano R. (2008). JAZ repressors set the rhythm in jasmonate signaling. Curr. Opin. Plant Biol. 11, 486–494 10.1016/j.pbi.2008.06.003 [DOI] [PubMed] [Google Scholar]
  10. Chini A., Fonseca S., Fernandez G., Adie B., Chico J. M., Lorenzo O., et al. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671 10.1038/nature06006 [DOI] [PubMed] [Google Scholar]
  11. Czechowski T., Bari R. P., Stitt M., Scheible W. R., Udvardi M. K. (2004). Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J. 38, 366–379 10.1111/j.1365-313X.2004.02051.x [DOI] [PubMed] [Google Scholar]
  12. Dat J., Vandenabeele S., Vranová E., Van Montagu M., Inzé D., Van Breusegem F. (2000). Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57, 779–795 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Danon A., Miersch O., Felix G., Camp R. G. Apel K. (2005). Concurrent activation of cell death-regulating signalling pathways by singlet oxygen in Arabidopsis thaliana. Plant J. 41, 68–80 10.1111/j.1365-313X.2004.02276.x [DOI] [PubMed] [Google Scholar]
  14. Debeaujon I., Nesi N., Perez P., Devic M., Grandjean O., Caboche M., et al. (2003). Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15, 2514–2531 10.1105/tpc.014043 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Desikan R., Mackerness S., Hancock, Neill S. J. (2001). Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127, 159–172 10.1104/pp.127.1.159 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fahnenstich H., Scarpeci T. E., Valle E. M., Flügge U. I., Maurino V. G. (2008). Generation of H2O2 in chloroplasts of Arabidopsis thaliana overexpressing glycolate oxidase as an inducible system to study oxidative stress. Plant Physiol. 148, 719–729 10.1104/pp.108.126789 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Foyer C. H., Noctor G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17, 1866–1875 10.1105/tpc.105.033589 [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fryer M. J., Ball L., Oxborough K., Karpinski S., Mullineaux P. M., Baker N. R. (2003). Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J. 33, 691–705 10.1046/j.1365-313X.2003.01656.x [DOI] [PubMed] [Google Scholar]
  19. Gao Z., Chung E. H., Eitas T. K., Dangl J. L. (2011). Plant intracellular innate immune receptor Resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) is activated at, and functions on, the plasma membrane. Proc. Natl. Acad. Sci. U.S.A. 108, 8915 10.1073/pnas.1104410108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gigolashvili T., Yatusevich R., Berger B., Müller C., Flügge U. I. (2007). The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 51, 247–261 10.1111/j.1365-313X.2007.03133.x [DOI] [PubMed] [Google Scholar]
  21. Inzé A., Vanderauwera S., Hoeberichts F. A., Vandorpe M., Van Gaever T., Van Breusegem F. (2012). A subcellular localization compendium of hydrogen peroxide-induced proteins. Plant Cell Environ. 35, 308–320 10.1111/j.1365-3040.2011.02323.x [DOI] [PubMed] [Google Scholar]
  22. Karpinski S., Reynoldsm H., Karpinska B., Wingsle G., Creissen G., Mullineaux P. (1999). Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science 23, 654–657 10.1126/science.284.5414.654 [DOI] [PubMed] [Google Scholar]
  23. Kliebenstein D. J., Kroymann J., Brown P., Figuth A., Pedersen D., Gershenzon J., et al. (2001). Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126, 811–825 10.1104/pp.126.2.811 [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leister D. (2005). Genomics-based dissection of the cross-talk of chloropalsts with the nucleus and mitochondria in Arabidopsis. Gene 354, 110–116 10.1016/j.gene.2005.03.039 [DOI] [PubMed] [Google Scholar]
  25. Li T., Li H., Zhang Y. X., Liu J. Y. (2011). Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic Acids Res. 39, 2821–2833 10.1093/nar/gkq1047 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Maurino V. G., Flügge U. I. (2008). Experimental systems to assess the effects of reactive oxygen species in plant tissues. Plant Signal. Behav. 3, 919–924 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maurino V. G., Peterhansel C. (2010). Photorespiration: current status and approaches for metabolic engineering. Curr. Opin. Plant Biol. 13, 248–255 10.1016/j.pbi.2010.01.006 [DOI] [PubMed] [Google Scholar]
  28. Miao Y., Laun T. M., Smykowski A., Zentgraf U. (2007). Arabidopsis MEKK1 can take a short cut: it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. Plant Mol. Biol. 65, 63–76 10.1007/s11103-007-9198-z [DOI] [PubMed] [Google Scholar]
  29. Mittler R., Vandeerauwera S., Gollery M., Van Breusegem F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490–498 10.1016/j.tplants.2004.08.009 [DOI] [PubMed] [Google Scholar]
  30. Møller I. M., Jensen P. E., Hansson A. (2007). Oxidative modifications to cellular components in plants. Ann. Rev. Plant Biol. 58, 459–481 10.1146/annurev.arplant.58.032806.103946 [DOI] [PubMed] [Google Scholar]
  31. Møller I. M., Sweetlove L. J. (2010). ROS signalling-specificity is required. Trends Plant Sci. 15, 370–374 10.1016/j.tplants.2010.04.008 [DOI] [PubMed] [Google Scholar]
  32. Mubarakshina M. M., Ivanov B. N., Naydov I. A., Hillier W., Badger M. R., Krieger-Liszkay A. (2010). Production and diffusion of chloroplastic H2O2 and its implication to signalling. J. Exp. Bot. 61, 3577–3587 10.1093/jxb/erq171 [DOI] [PubMed] [Google Scholar]
  33. Neill S., Desikan R., Hancock J. (2002). Hydrogen peroxide signaling. Curr. Opin. Plant Biol. 5, 388–395 10.1016/S1369-5266(02)00282-0 [DOI] [PubMed] [Google Scholar]
  34. Obayashi T., Hayashi S., Saeki M., Ohta H., Kinoshita K. (2009). ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res. 37, 987–991 10.1093/nar/gkn807 [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Oh Y., Baldwin I. T., Gális I. (2012). NaJAZh regulates a subset of defense responses against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants. Plant Physiol. 159, 769–788 10.1104/pp.112.193771 [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Op den Camp R. G. L., Przybyla D., Ochsenbein C., Laloi C., Kim C., Danon A., et al. (2003). Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15, 2320–2332 10.1105/tpc.014662 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Orozco-Cardenas M., Ryan C. A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. U.S.A. 96, 6553–6557 10.1073/pnas.96.11.6553 [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ort D. R., Baker N. R. (2002). A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr. Opin. Plant Biol. 5, 193–198 10.1016/S1369-5266(02)00259-5 [DOI] [PubMed] [Google Scholar]
  39. Pauwels L., Barbero G. F., Geerinck J., Tilleman S., Grunewald W., Perez A. C., et al. (2010). NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464, 788–791 10.1038/nature08854 [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Petrov V. D., Van Breusegem F. (2012). Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants. 2012, pls014. 10.1093/aobpla/pls014 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pfalz M., Mikkelsen M. D., Bednarek P., Olsen C. E., Halkier B. A., Kroymann J. (2011). Metabolic engineering in Nicotiana benthamiana reveals key enzyme functions in Arabidopsis indole glucosinolate modification. Plant Cell 23, 716–729 10.1105/tpc.110.081711 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Staswick P. E. (2009). The tryptophan conjugates of jasmonic and indole-3-acetic acids are endogenous auxin inhibitors. Plant Physiol. 150, 1310–1321 10.1104/pp.109.138529 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tripathi B. N., Bhatt I., Dietz K. J. (2009). Peroxiredoxins: a less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma 235, 3–15 10.1007/s00709-009-0032-0 [DOI] [PubMed] [Google Scholar]
  44. Van Breusegem F., Bailey-Serres J., Mittler R. (2008). Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol. 147, 978–984 10.1104/pp.108.122325 [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vandenabeele S., Vanderauwera S., Vuylsteke M., Rombauts S., Langebartels C., Seidlitz H. K., et al. (2004). Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J. 39, 45–58 10.1111/j.1365-313X.2004.02105.x [DOI] [PubMed] [Google Scholar]
  46. Vanderauwera S., Zimmermann P., Rombauts S., Vandenabeele S., Langebartels C., Gruissem W., et al. (2005). Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol. 139, 806–821 10.1104/pp.105.065896 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wu A., Allu A. D., Garapati P., Siddiqui H., Dortay H., Zanor M.-I., et al. (2012). JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. Plant Cell 24, 482–506 10.1105/tpc.111.090894 [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yan Y., Stolz S., Chetelat A., Reymond P., Pagni M., Dubugnon L., et al. (2007). A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470–2483 10.1105/tpc.107.050708 [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zavala J. A., Baldwin I. T. (2006). Jasmonic acid signalling and herbivore resistance traits constrain regrowth after herbivore attack in Nicotiana attenuata. Plant Cell Environ. 29, 1751–1760 10.1111/j.1365-3040.2006.01551.x [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Plant Science are provided here courtesy of Frontiers Media SA

RESOURCES