Abstract
We have examined the range of some properties of the progeny of a single embryonic precursor cell in the grasshopper. The approximately 100 progeny of this single neuroblast share certain features such as their transmitter and some aspects of their morphology; at the same time, however, they demonstrate a broad spectrum of electrical properties, from spiking to non-spiking neurons. The first-born progeny are spiking neurons with peripheral axons. Many of the progeny, including all of the last-born, do not generate action potentials. The nonspiking progeny are local intraganglionic neurons and appear to compose a major proportion of the progeny of this neuroblast. All of the nonspiking neurons have calcium inward current channels and can make action potentials when outward current channels are blocked. We propose a model for grasshopper neurogenesis based on cell lineage such that (i) certain features (e.g., transmitter) are shared by the progeny of all cell divisions from a single neuroblast, and (ii) other features (e.g., electrical properties) are shared by the progeny of a given birth position (e.g., first versus last born) from all of the neuroblasts. According to this model, the first-born progeny from all neuroblasts are spiking neurons, whereas the last-born are nonspiking.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bate C. M. Embryogenesis of an insect nervous system. I. A map of the thoracic and abdominal neuroblasts in Locusta migratoria. J Embryol Exp Morphol. 1976 Feb;35(1):107–123. [PubMed] [Google Scholar]
- Bentley D., Keshishian H., Shankland M., Toroian-Raymond A. Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J Embryol Exp Morphol. 1979 Dec;54:47–74. [PubMed] [Google Scholar]
- Burrows M., Siegler M. V. Graded synaptic transmission between local interneurones and motor neurones in the metathoracic ganglion of the locust. J Physiol. 1978 Dec;285:231–255. doi: 10.1113/jphysiol.1978.sp012569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burrows M., Siegler M. V. Transmission without spikes between locust interneurones and motoneurones. Nature. 1976 Jul 15;262(5565):222–224. doi: 10.1038/262222a0. [DOI] [PubMed] [Google Scholar]
- Evans P. D., Kravitz E. A., Talamo B. R., Wallace B. G. The association of octopamine with specific neurones along lobster nerve trunks. J Physiol. 1976 Oct;262(1):51–70. doi: 10.1113/jphysiol.1976.sp011585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman C. S., Heitler W. J. Electrical properties of insect neurones with spiking and non-spiking somata: normal, axotomized, and colchicine-treated neurones. J Exp Biol. 1979 Dec;83:95–121. doi: 10.1242/jeb.83.1.95. [DOI] [PubMed] [Google Scholar]
- Goodman C. S., O'Shea M., McCaman R., Spitzer N. C. Embryonic development of identified neurons: temporal pattern of morphological and biochemical differentiation. Science. 1979 Jun 15;204(4398):1219–1222. doi: 10.1126/science.36661. [DOI] [PubMed] [Google Scholar]
- Goodman C. S., Spitzer N. C. Embryonic development of identified neurones: differentiation from neuroblast to neurone. Nature. 1979 Jul 19;280(5719):208–214. doi: 10.1038/280208a0. [DOI] [PubMed] [Google Scholar]
- Pearson K. G., Fourtner C. R. Nonspiking interneurons in walking system of the cockroach. J Neurophysiol. 1975 Jan;38(1):33–52. doi: 10.1152/jn.1975.38.1.33. [DOI] [PubMed] [Google Scholar]
- Pearson K. G., Goodman C. S. Correlation of variability in structure with variability in synaptic connections of an identified interneuron in locusts. J Comp Neurol. 1979 Mar 1;184(1):141–166. doi: 10.1002/cne.901840109. [DOI] [PubMed] [Google Scholar]
- Siegler M. V., Burrows M. The morphology of local non-spiking interneurones in the metathoracic ganglion of the locust. J Comp Neurol. 1979 Jan 1;183(1):121–147. doi: 10.1002/cne.901830110. [DOI] [PubMed] [Google Scholar]
- Stewart W. W. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell. 1978 Jul;14(3):741–759. doi: 10.1016/0092-8674(78)90256-8. [DOI] [PubMed] [Google Scholar]
- Stuart A. E., Hudspeth A. J., Hall Z. W. Vital staining of specific monoamine-containing cells in the leech nervous system. Cell Tissue Res. 1974;153(1):55–61. doi: 10.1007/BF00225445. [DOI] [PubMed] [Google Scholar]
- Sulston J. E., Horvitz H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 1977 Mar;56(1):110–156. doi: 10.1016/0012-1606(77)90158-0. [DOI] [PubMed] [Google Scholar]
- Wallace B. G., Talamo B. R., Evans P. D., Kravitz E. A. Octopamine: selective association with specific neurons in the lobster nervous system. Brain Res. 1974 Jul 12;74(2):349–355. doi: 10.1016/0006-8993(74)90590-3. [DOI] [PubMed] [Google Scholar]
- Werblin F. S., Dowling J. E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol. 1969 May;32(3):339–355. doi: 10.1152/jn.1969.32.3.339. [DOI] [PubMed] [Google Scholar]