Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Apr;77(4):1801–1805. doi: 10.1073/pnas.77.4.1801

Deoxyribonucleotide pools, base pairing, and sequence configuration affecting bromodeoxyuridine- and 2-aminopurine-induced mutagenesis.

R L Hopkins, M F Goodman
PMCID: PMC348595  PMID: 6929522

Abstract

Despite recent experiments showing that BrdUrd-induced mutagenesis can be independent of the level of bromouracil (BrUra) substitution [Kaufman, E.R. & Davidson, R.L. (1978) Proc. Natl. Acad. Sci. USA 75, 4982-4986; Aebersold, P.M. (1976) Mutat. Res. 36, 357-362], BrUra.G base mispairs are a major determinant of mutagenesis. We propose that the experiments cited above are sensitive predominantly to G . C leads to A . T transitions driven by the immeasurably small but highly mutagenic substitution of BrUra for cytosine and not by the gross substitution of BrUra for thymine in DNA. More generally, we show how accumulated evidence suggests that both BrdUrd and 2-aminopurine have two mutagenic effects intracellularly: perturbation of normal deoxyribonucleoside triphosphate pools and analogue mispairs in DNA. We propose a molecular basis for various observations of normal exogenous deoxyribonucleosides as synergists and counteragents to base analogue mutagenesis. A model is proposed to explain the antipolarity of BrdUrd and 2-aminopurine mutagenesis--i.e., why mutants at hot spots for induction by one base analogue are usually hot spots for reversion by the other. It is concluded that the configuration of the neighboring nucleotides surrounding the base analogue mispair, and not the base analogue's preference for inducing A . T leads to G . C or G . C leads to A . T errors, is responsible for the antipolarity of BrdUrd and 2-aminopurine mutagenesis.

Full text

PDF
1801

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aebersold P. M. Mutagenic mechanism of 5-bromodeoxyuridine in Chinese hamster cells. Mutat Res. 1976 Sep;36(3):357–362. doi: 10.1016/0027-5107(76)90245-1. [DOI] [PubMed] [Google Scholar]
  2. Agarwal R. P., Sagar S. M., Parks R. E., Jr Adenosine deaminase from human erythrocytes: purification and effects of adenosine analogs. Biochem Pharmacol. 1975 Mar 15;24(6):693–701. doi: 10.1016/0006-2952(75)90245-2. [DOI] [PubMed] [Google Scholar]
  3. Benzer S., Freese E. INDUCTION OF SPECIFIC MUTATIONS WITH 5-BROMOURACIL. Proc Natl Acad Sci U S A. 1958 Feb;44(2):112–119. doi: 10.1073/pnas.44.2.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benzer S. ON THE TOPOGRAPHY OF THE GENETIC FINE STRUCTURE. Proc Natl Acad Sci U S A. 1961 Mar;47(3):403–415. doi: 10.1073/pnas.47.3.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernstein C., Bernstein H., Mufti S., Strom B. Stimulation of mutation in phage T 4 by lesions in gene 32 and by thymidine imbalance. Mutat Res. 1972 Oct;16(2):113–119. doi: 10.1016/0027-5107(72)90171-6. [DOI] [PubMed] [Google Scholar]
  6. Bessman M. J., Muzyczka N., Goodman M. F., Schnaar R. L. Studies on the biochemical basis of spontaneous mutation. II. The incorporation of a base and its analogue into DNA by wild-type, mutator and antimutator DNA polymerases. J Mol Biol. 1974 Sep 15;88(2):409–421. doi: 10.1016/0022-2836(74)90491-4. [DOI] [PubMed] [Google Scholar]
  7. Bessman M. J., Reha-Krantz L. J. Studies on the biochemical basis of spontaneous mutation. V. Effect of temperature on mutation frequency. J Mol Biol. 1977 Oct 15;116(1):115–123. doi: 10.1016/0022-2836(77)90122-x. [DOI] [PubMed] [Google Scholar]
  8. Bick M. D., Davidson R. L. Total substitution of bromodeoxyuridine for thymidine in the DNA of a bromodeoxyuridine-dependent cell line. Proc Natl Acad Sci U S A. 1974 May;71(5):2082–2086. doi: 10.1073/pnas.71.5.2082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bjursell G., Reichard P. Effects of thymidine on deoxyribonucleoside triphosphate pools and deoxyribonucleic acid synthesis in Chinese hamster ovary cells. J Biol Chem. 1973 Jun 10;248(11):3904–3909. [PubMed] [Google Scholar]
  10. Bradley M. O., Sharkey N. A. Mutagenicity of thymidine to cultured Chinese hamster cells. Nature. 1978 Aug 10;274(5671):607–608. doi: 10.1038/274607a0. [DOI] [PubMed] [Google Scholar]
  11. Bresler S., Mosevitsky M., Vyacheslavov L. Complete mutagenesis in a bacterial population induced by thymine starvation on solid media. Nature. 1970 Feb 21;225(5234):764–766. doi: 10.1038/225764a0. [DOI] [PubMed] [Google Scholar]
  12. Brutlag D., Kornberg A. Enzymatic synthesis of deoxyribonucleic acid. 36. A proofreading function for the 3' leads to 5' exonuclease activity in deoxyribonucleic acid polymerases. J Biol Chem. 1972 Jan 10;247(1):241–248. [PubMed] [Google Scholar]
  13. CHAMPE S. P., BENZER S. Reversal of mutant phenotypes by 5-fluorouracil: an approach to nucleotide sequences in messenger-RNA. Proc Natl Acad Sci U S A. 1962 Apr 15;48:532–546. doi: 10.1073/pnas.48.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Carson D. A., Kaye J., Seegmiller J. E. Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency: possible role of nucleoside kinase(s). Proc Natl Acad Sci U S A. 1977 Dec;74(12):5677–5681. doi: 10.1073/pnas.74.12.5677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chan T. S. Deoxyguanosine toxicity on lymphoid cells as a cause for immunosuppression in purine nucleoside phosphorylase deficiency. Cell. 1978 Jul;14(3):523–530. doi: 10.1016/0092-8674(78)90238-6. [DOI] [PubMed] [Google Scholar]
  16. Clayton L. K., Goodman M. F., Branscomb E. W., Galas D. J. Error induction and correction by mutant and wild type T4 DNA polymerases. Kinetic error discrimination mechanisms. J Biol Chem. 1979 Mar 25;254(6):1902–1912. [PubMed] [Google Scholar]
  17. Cohen A., Hirschhorn R., Horowitz S. D., Rubinstein A., Polmar S. H., Hong R., Martin D. W., Jr Deoxyadenosine triphosphate as a potentially toxic metabolite in adenosine deaminase deficiency. Proc Natl Acad Sci U S A. 1978 Jan;75(1):472–476. doi: 10.1073/pnas.75.1.472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. doi: 10.1038/274775a0. [DOI] [PubMed] [Google Scholar]
  19. Davidson R. L., Kaufman E. R. Bromodeoxyuridine mutagenesis in mammalian cells is stimulated by thymidine and suppressed by deoxycytidine. Nature. 1978 Dec 14;276(5689):722–723. doi: 10.1038/276722a0. [DOI] [PubMed] [Google Scholar]
  20. Davidson R. L., Kaufman E. R. Deoxycytidine reverses the suppression of pigmentation caused by 5-BrdUrd without changing the amount of 5-BrdUrd in DNA. Cell. 1977 Dec;12(4):923–929. doi: 10.1016/0092-8674(77)90156-8. [DOI] [PubMed] [Google Scholar]
  21. De Waard A., Paul A. V., Lehman I. R. The structural gene for deoxyribonucleic acid polymerase in bacteriophages T4 and T5. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1241–1248. doi: 10.1073/pnas.54.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fersht A. R. Fidelity of replication of phage phi X174 DNA by DNA polymerase III holoenzyme: spontaneous mutation by misincorporation. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4946–4950. doi: 10.1073/pnas.76.10.4946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Frederiksen S. Effect of 2-aminopurine and 2-aminopurine 2'-deoxyriboside on nucleic acid synthesis in Ehrlich ascites cells in vitro. Biochem Pharmacol. 1965 May;14(5):651–660. doi: 10.1016/0006-2952(65)90083-3. [DOI] [PubMed] [Google Scholar]
  24. Freese E. THE DIFFERENCE BETWEEN SPONTANEOUS AND BASE-ANALOGUE INDUCED MUTATIONS OF PHAGE T4. Proc Natl Acad Sci U S A. 1959 Apr;45(4):622–633. doi: 10.1073/pnas.45.4.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Goodman M. F., Hopkins R., Gore W. C. 2-Aminopurine-induced mutagenesis in T4 bacteriophage: a model relating mutation frequency to 2-aminopurine incorporation in DNA. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4806–4810. doi: 10.1073/pnas.74.11.4806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. HOWARD B. D., TESSMAN I. IDENTIFICATION OF THE ALTERED BASES IN MUTATED SINGLE-STRANDED DNA. II. IN VIVO MUTAGENESIS BY 5-BROMODEOXYURIDINE AND 2-AMINOPURINE. J Mol Biol. 1964 Aug;9:364–371. doi: 10.1016/s0022-2836(64)80213-8. [DOI] [PubMed] [Google Scholar]
  27. Hopkins R., Goodman M. F. Asymmetry in forming 2-aminopurine . hydroxymethylcytosine heteroduplexes; A model giving misincorporation frequencies and rounds of DNA replication from base-pair populations in vivo. J Mol Biol. 1979 Nov 25;135(1):1–22. doi: 10.1016/0022-2836(79)90337-1. [DOI] [PubMed] [Google Scholar]
  28. Janion C. The efficiency and extent of mutagenic activity of some new mutagens of base-analogue type. Mutat Res. 1978 Jan;56(3):225–234. doi: 10.1016/0027-5107(78)90189-6. [DOI] [PubMed] [Google Scholar]
  29. Kaufman E. R., Davidson R. L. Bromodeoxyuridine mutagenesis in mammalian cells is stimulated by purine deoxyribonucleosides. Somatic Cell Genet. 1979 Sep;5(5):653–663. doi: 10.1007/BF01542701. [DOI] [PubMed] [Google Scholar]
  30. Kaufman E. R., Davidson R. L. Bromodeoxyuridine mutagenesis in mammalian cells: mutagenesis is independent of the amount of bromouracil in DNA. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4982–4986. doi: 10.1073/pnas.75.10.4982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kimball R. F., Perdue S. W. Attempts to induce mutations in Haemophilus influenzae with the base analogues 5-bromodeoxyuridine and 2-aminopurine. Mutat Res. 1977 Aug;44(2):197–206. doi: 10.1016/0027-5107(77)90077-x. [DOI] [PubMed] [Google Scholar]
  32. Koch R. E. The influence of neighboring base pairs upon base-pair substitution mutation rates. Proc Natl Acad Sci U S A. 1971 Apr;68(4):773–776. doi: 10.1073/pnas.68.4.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. LAWLEY P. D., BROOKES P. Ionization of DNA bases or base analogues as a possible explanation of mutagenesis, with special reference to 5-bromodeoxyuridine. J Mol Biol. 1962 Mar;4:216–219. doi: 10.1016/s0022-2836(62)80053-9. [DOI] [PubMed] [Google Scholar]
  34. LITMAN R. M., PARDEE A. B. The induction of mutants of bacteriophage T2 by 5-bromouracil. III. Nutritional and structural evidence regarding mutagenic action. Biochim Biophys Acta. 1960 Jul 29;42:117–130. doi: 10.1016/0006-3002(60)90758-7. [DOI] [PubMed] [Google Scholar]
  35. LITMAN R. M., PARDEE A. B. The induction of mutants of bacteriophage T2 by 5-bromouracil. IV. Kinetics of bromouracil-induced mutagenesis. Biochim Biophys Acta. 1960 Jul 29;42:131–140. doi: 10.1016/0006-3002(60)90759-9. [DOI] [PubMed] [Google Scholar]
  36. Laird C. D., Bodmer W. F. 5-bromouracil utilization by Bacillus subtilis. J Bacteriol. 1967 Oct;94(4):1277–1278. doi: 10.1128/jb.94.4.1277-1278.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mathews C. K. Biochemistry of DNA-defective mutants of bacteriophage T4. Thymine nucleotide pool dynamics. Arch Biochem Biophys. 1976 Jan;172(1):178–187. doi: 10.1016/0003-9861(76)90064-3. [DOI] [PubMed] [Google Scholar]
  38. Meuth M., Green H. Induction of a deoxycytidineless state in cultured mammalian cells by bromodeoxyuridine. Cell. 1974 Jun;2(2):109–112. doi: 10.1016/0092-8674(74)90099-3. [DOI] [PubMed] [Google Scholar]
  39. Moore E. C., Hurlbert R. B. Regulation of mammalian deoxyribonucleotide biosynthesis by nucleotides as activators and inhibitors. J Biol Chem. 1966 Oct 25;241(20):4802–4809. [PubMed] [Google Scholar]
  40. Muzyczka N., Poland R. L., Bessman M. J. Studies on the biochemical basis of spontaneous mutation. I. A comparison of the deoxyribonucleic acid polymerases of mutator, antimutator, and wild type strains of bacteriophage T4. J Biol Chem. 1972 Nov 25;247(22):7116–7122. [PubMed] [Google Scholar]
  41. Neuhard J., Munch-Petersen A. Studies on the acid-soluble nucleotide pool in thymine-requiring mutants of Escherichia coli during thymine starvation. II. Changes in the amounts of deoxycytidine triphosphate and deoxyadenosine triphosphate in Escherichia coli 15 T-A-U. Biochim Biophys Acta. 1966 Jan 18;114(1):61–71. doi: 10.1016/0005-2787(66)90253-x. [DOI] [PubMed] [Google Scholar]
  42. Neuhard J. Studies on the acid-soluble nucleotide pool in thymine-requiring mutants of Escherichia coli during thymine starvation. 3. On the regulation of the deoxyadenosine triphosphate and deoxycytidine triphosphate pools of Escherichia coli. Biochim Biophys Acta. 1966 Oct 24;129(1):104–115. doi: 10.1016/0005-2787(66)90012-8. [DOI] [PubMed] [Google Scholar]
  43. Osborn M., Person S., Phillips S., Funk F. A determination of mutagen specificity in bacteria using nonsense mutants of bacteriophage T4. J Mol Biol. 1967 Jun 28;26(3):437–447. doi: 10.1016/0022-2836(67)90314-2. [DOI] [PubMed] [Google Scholar]
  44. Peterson A. R., Landolph J. R., Peterson H., Heidelberger C. Mutagenesis of Chinese hamster cells is facilitated by thymidine and deoxycytidine. Nature. 1978 Nov 30;276(5687):508–510. doi: 10.1038/276508a0. [DOI] [PubMed] [Google Scholar]
  45. Pratt D., Stent G. S. MUTATIONAL HETEROZYGOTES IN BACTERIOPHAGES. Proc Natl Acad Sci U S A. 1959 Oct;45(10):1507–1515. doi: 10.1073/pnas.45.10.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. REICHARD P., CANELLAKIS Z. N., CANELLAKIS E. S. Studies on a possible regulatory mechanism for the biosynthesis of deoxyribonucleic acid. J Biol Chem. 1961 Sep;236:2514–2519. [PubMed] [Google Scholar]
  47. RUDNER R. Mutation as an error in base pairing II. Kinetics of 5-bromodeoxyuridine and 2-aminopurine-induced mutagenesis. Z Vererbungsl. 1961;92:361–379. doi: 10.1007/BF00890058. [DOI] [PubMed] [Google Scholar]
  48. RUDNER R. Mutation as an error in base pairing. I. The mutagenicity of base analogues and their incorporation into the DNA of Salmonella typhimurium. Z Vererbungsl. 1961;92:336–360. [PubMed] [Google Scholar]
  49. RUDNER R. Mutation as an error in base pairing. Biochem Biophys Res Commun. 1960 Sep;3:275–280. doi: 10.1016/0006-291x(60)90239-4. [DOI] [PubMed] [Google Scholar]
  50. Rackwitz H. R., Scheit K. H. The stereochemical basis of template function. Eur J Biochem. 1977 Jan 3;72(1):191–200. doi: 10.1111/j.1432-1033.1977.tb11239.x. [DOI] [PubMed] [Google Scholar]
  51. Reichard P. From deoxynucleotides to DNA synthesis. Fed Proc. 1978 Jan;37(1):9–14. [PubMed] [Google Scholar]
  52. Ronen A. 2-Aminopurine. Mutat Res. 1980 Jan;75(1):1–47. doi: 10.1016/0165-1110(80)90026-3. [DOI] [PubMed] [Google Scholar]
  53. Ronen A., Halevy C., Kass N. Site specificity and variability in the mutator and antimutator effects of phage T4 gene 43 mutants. Genetics. 1978 Dec;90(4):647–657. doi: 10.1093/genetics/90.4.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Ronen A., Rahat A., Halevy C. Marker effects on reversion of T4rII mutants. Genetics. 1976 Nov;84(3):423–436. doi: 10.1093/genetics/84.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Ronen A., Rahat A. Mutagen specificity and position effects on mutation in T4rII nonsense sites. Mutat Res. 1976 Jan;34(1):21–34. doi: 10.1016/0027-5107(76)90258-x. [DOI] [PubMed] [Google Scholar]
  56. STERLZOFF E. DNA synthesis and induced mutations in the presence of 5-bromouracil. II. Induction of mutations. Z Vererbungsl. 1962;93:301–318. [PubMed] [Google Scholar]
  57. Salts Y., Ronen A. Neighbor effects in the mutation of ochre triplets in the T 4 rII gene. Mutat Res. 1971 Oct;13(2):109–113. doi: 10.1016/0027-5107(71)90002-9. [DOI] [PubMed] [Google Scholar]
  58. Smith M. D., Green R. R., Ripley L. S., Drake J. W. Thymineless mutagenesis in bacteriophage T4. Genetics. 1973 Jul;74(3):393–403. doi: 10.1093/genetics/74.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. TERZAGHI B. E., STREISINGER G., STAHL F. W. The mechanism of 5-bromouracil mutagenesis in the bacteriophage T alpha. Proc Natl Acad Sci U S A. 1962 Sep 15;48:1519–1524. doi: 10.1073/pnas.48.9.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. WEINBERG R., BOYER H. W. BASE ANALOGUE INDUCED ARABINOSE-NEGATIVE MUTANTS OF ESCHERICHIA COLI. Genetics. 1965 Apr;51:545–553. doi: 10.1093/genetics/51.4.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wacker A., Lodemann E., Gauri K., Chandra P. Synthesis and coding properties of 2-aminopurine polyribonucleotide. J Mol Biol. 1966 Jul;18(2):382–383. doi: 10.1016/s0022-2836(66)80255-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES