Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Apr;77(4):1806–1808. doi: 10.1073/pnas.77.4.1806

Cytochrome oxidase: an alternative model.

C H Seiter, S G Angelos
PMCID: PMC348596  PMID: 6246505

Abstract

Oxidative titration of reduced cytochrome oxidase (cytochrome c oxidase; ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) in the presence of carbon monoxide and sulfide, at potentials greater than +500 mV (vs. the neutral hydrogen electrode), have failed to produce new copper signals in the electron paramagnetic resonance spectrum of this enzyme. This observation implies that once of the copper centers in cytochrome oxidase remains Cu(I) under strongly oxidizing conditions. The rationalization of this fact, and the possible explanation of a great accumulation of spectroscopic data, is that cytochrome a3 may be a two-electron redox center, with stable Fe(IV), Fe(III), and Fe(II) states during its redox cycle. This oxidase model does not require an antiferromagnetic coupling scheme, in contrast to currently prevalent models.

Full text

PDF
1806

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adar F., Yonetani T. Resonance Raman spectra of cytochrome oxidase. Evidence for photoreduction by laser photons in resonance with the Soret band. Biochim Biophys Acta. 1978 Apr 11;502(1):80–86. doi: 10.1016/0005-2728(78)90133-0. [DOI] [PubMed] [Google Scholar]
  2. Babcock G. T., Salmeen I. Resonance Raman spectra and optical properties of oxidized cytochrome oxidase. Biochemistry. 1979 Jun 12;18(12):2493–2498. doi: 10.1021/bi00579a009. [DOI] [PubMed] [Google Scholar]
  3. Babcock G. T., Vickery L. E., Palmer G. The electronic state of heme in cytochrome oxidase II. Oxidation-reduction potential interactions and heme iron spin state behavior observed in reductive titrations. J Biol Chem. 1978 Apr 10;253(7):2400–2411. [PubMed] [Google Scholar]
  4. Chance B., Saronio C., Leigh J. S., Jr Functional intermediates in the reaction of membrane-bound cytochrome oxidase with oxygen. J Biol Chem. 1975 Dec 25;250(24):9226–9237. [PubMed] [Google Scholar]
  5. GEORGE P., IRVINE D. H. A possible structure for the higher oxidation state of metmyoglobin. Biochem J. 1955 Aug;60(4):596–604. doi: 10.1042/bj0600596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hartzell C. R., Beinert H. Oxido-reductive titrations of cytochrome c oxidase followed by EPR spectroscopy. Biochim Biophys Acta. 1976 Feb 16;423(2):323–338. doi: 10.1016/0005-2728(76)90189-4. [DOI] [PubMed] [Google Scholar]
  7. Hu V. W., Chan S. I., Brown G. S. X-ray absorption edge studies on oxidized and reduced cytochrome c oxidase. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3821–3825. doi: 10.1073/pnas.74.9.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hu V. W., Chan S. I. X-ray absorption edge studies on cyanide-bound cytochrome C oxidase. FEBS Lett. 1977 Dec 15;84(2):287–290. doi: 10.1016/0014-5793(77)80708-4. [DOI] [PubMed] [Google Scholar]
  9. Lang G. Mössbauer spectroscopy of haem proteins. Q Rev Biophys. 1970 Feb;3(1):1–60. doi: 10.1017/s0033583500004406. [DOI] [PubMed] [Google Scholar]
  10. Leigh J. S., Jr, Wilson D. F., Owen C. S., King T. E. Heme-heme interaction in cytochrome c oxidase: the cooperativity of the hemes of cytochrome c oxidase as evidenced in the reaction with CO. Arch Biochem Biophys. 1974 Feb;160(2):476–486. doi: 10.1016/0003-9861(74)90424-x. [DOI] [PubMed] [Google Scholar]
  11. Moyle J., Mitchell P. Cytochrome c oxidase is not a proton pump. FEBS Lett. 1978 Apr 15;88(2):268–272. doi: 10.1016/0014-5793(78)80190-2. [DOI] [PubMed] [Google Scholar]
  12. Nicholls P. A new carbon monoxide-induced complex of cytochrome c oxidase. Biochem J. 1978 Dec 1;175(3):1147–1150. doi: 10.1042/bj1751147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nicholls P., Hildebrandt V. Binding of ligands and spectral shifts in cytochrome c oxidase. Biochem J. 1978 Jul 1;173(1):65–72. doi: 10.1042/bj1730065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nicholls P. The effect of sulphide on cytochrome aa3. Isosteric and allosteric shifts of the reduced alpha-peak. Biochim Biophys Acta. 1975 Jul 8;396(1):24–35. doi: 10.1016/0005-2728(75)90186-3. [DOI] [PubMed] [Google Scholar]
  15. Palmer G., Babcock G. T., Vickery L. E. A model for cytochrome oxidase. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2206–2210. doi: 10.1073/pnas.73.7.2206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Powers L., Blumberg W. E., Chance B., Barlow C. H., Leigh J. S., Jr, Smith J., Yonetani T., Vik S., Peisach J. The nature of the copper atoms of cytochrome c oxidase as studied by optical and x-ray absorption edge spectroscopy. Biochim Biophys Acta. 1979 Jun 5;546(3):520–538. doi: 10.1016/0005-2728(79)90085-9. [DOI] [PubMed] [Google Scholar]
  17. Seiter C. H., Angelos S. G., Perreault R. A. An EPR signal from the "invisible" copper of cytochrome oxidase. Biochem Biophys Res Commun. 1977 Sep 23;78(2):761–765. doi: 10.1016/0006-291x(77)90244-3. [DOI] [PubMed] [Google Scholar]
  18. Springall J., Stillman M. J., Thomson A. J. Low temperature magnetic circular dichroism spectra of met- and myoglobin derivatives. Biochim Biophys Acta. 1976 Dec 22;453(2):494–501. doi: 10.1016/0005-2795(76)90145-8. [DOI] [PubMed] [Google Scholar]
  19. Stevens T. H., Brudvig G. W., Bocian D. F., Chan S. I. Structure of cytochrome a3-Cua3 couple in cytochrome c oxidase as revealed by nitric oxide binding studies. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3320–3324. doi: 10.1073/pnas.76.7.3320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sun F. F., Prezbindowski K. S., Crane F. L., Jacobs E. E. Physical state of cytochrome oxidase. Relationship between membrane formation and ionic strength. Biochim Biophys Acta. 1968 May 28;153(4):804–818. doi: 10.1016/0005-2728(68)90008-x. [DOI] [PubMed] [Google Scholar]
  21. Tweedle M. F., Wilson L. J. Electronic state of heme in cytochrome oxidase III. The magnetic susceptibility of beef heart cytochrome oxidase and some of its derivatives from 7-200 K. Direct evidence for an antiferromagnetically coupled Fe (III)/Cu (II) pair. J Biol Chem. 1978 Nov 25;253(22):8065–8071. [PubMed] [Google Scholar]
  22. Vanneste W. H. The stoichiometry and absorption spectra of components a and a-3 in cytochrome c oxidase. Biochemistry. 1966 Mar;5(3):838–848. doi: 10.1021/bi00867a005. [DOI] [PubMed] [Google Scholar]
  23. Wever R., Van Drooge J. H., Muijsers A. O., Bakker E. P., Van Gelker B. F. The binding of carbon monoxide to cytochrome c oxidase. Eur J Biochem. 1977 Feb 15;73(1):149–154. doi: 10.1111/j.1432-1033.1977.tb11301.x. [DOI] [PubMed] [Google Scholar]
  24. Wikström M., Krab K. Cytochrome c oxidase is a proton pump: a rejoinder to recent criticism. FEBS Lett. 1978 Jul 1;91(1):8–14. doi: 10.1016/0014-5793(78)80006-4. [DOI] [PubMed] [Google Scholar]
  25. Yonetani T. Cytochrome c peroxidase. Adv Enzymol Relat Areas Mol Biol. 1970;33:309–335. doi: 10.1002/9780470122785.ch6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES