Abstract
To investigate the possibility that experimental promotion of retardation of the senescence of oat leaves may be mediated by abscisic acid (AbA), determinations of AbA were made in leaves senescing under different conditions. The extracts were subjected to thin-layer chromatography, the spots were eluted and esterified, and the AbA was determined by gas chromatography (overall recovery, about 75%). In darkness, where the stomata are closed and senescence is rapid, the concentration of AbA increases to at least 5 times its initial value by the second day, the time when chlorophyll loss is most rapid. In light, where the stomata are open and senescence is very slow, no such increase occurs. But when, in light, the stomata are closed by floating the leaves on 1 M mannitol, the AbA level again increases to about 5 times the initial value; if the stoma response is prevented by kinetin, the increase in AbA is largely suppressed. Similarly, phenylmercuric nitrate, at a concentration that closes the stomata, causes a 4-fold increase in AbA. It is concluded that stomatal closure itself causes AbA accumulation and, thus, that AbA may indeed be the proximal cause of leaf senescence.
Keywords: chlorophyll, porometer, stomata, mannitol
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aharoni N., Lieberman M. Ethylene as a regulator of senescence in tobacco leaf discs. Plant Physiol. 1979 Nov;64(5):801–804. doi: 10.1104/pp.64.5.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aharoni N., Lieberman M. Patterns of ehtylene production in senescing leaves. Plant Physiol. 1979 Nov;64(5):796–800. doi: 10.1104/pp.64.5.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayak S., Dilley D. R. Regulation of Senescence in Carnation (Dianthus caryophyllus): Effect of Abscisic Acid and Carbon Dioxide on Ethylene Production. Plant Physiol. 1976 Nov;58(5):663–665. doi: 10.1104/pp.58.5.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quarrie S. A. A rapid and sensitive assay for abscisic acid using ethyl abscisate as an internal standard. Anal Biochem. 1978 Jun 15;87(1):148–156. doi: 10.1016/0003-2697(78)90579-1. [DOI] [PubMed] [Google Scholar]
- Tetley R. M., Thimann K. V. The Metabolism of Oat Leaves during Senescence: I. Respiration, Carbohydrate Metabolism, and the Action of Cytokinins. Plant Physiol. 1974 Sep;54(3):294–303. doi: 10.1104/pp.54.3.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thimann K. V., Satler S. O. Relation between leaf senescence and stomatal closure: Senescence in light. Proc Natl Acad Sci U S A. 1979 May;76(5):2295–2298. doi: 10.1073/pnas.76.5.2295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thimann K. V., Satler S. Relation between senescence and stomatal opening: Senescence in darkness. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2770–2773. doi: 10.1073/pnas.76.6.2770. [DOI] [PMC free article] [PubMed] [Google Scholar]