Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Apr;77(4):2069–2073. doi: 10.1073/pnas.77.4.2069

Immunological differences between actins from cardiac muscle, skeletal muscle, and brain

Janet L Morgan 1,*, Carter R Holladay 1, Brian S Spooner 1,
PMCID: PMC348653  PMID: 6154943

Abstract

The antigenic similarities and differences between various actins were explored by use of antisera against purified bovine cardiac actin and chicken embryo brain actin. In double-antibody coprecipitation tests, purified iodinated actins from bovine cardiac muscle, rabbit skeletal muscle, chicken embryo brain, and bovine brain all bound to antiserum against chicken embryo brain actin. This result demonstrates the presence of shared antigenic determinants among these actins. Cardiac actin antiserum, on the other hand, bound cardiac and skeletal actin, but failed to bind significantly either brain actin. In radioimmunoassay, all four unlabeled actins were capable of some degree of inhibition of binding of 125I-labeled chicken embryo brain actin to homologous antiserum. The results confirm the existence of shared or similar antigenic determinants, but also show that the molecules are not antigenically identical. In the cardiac actin radioimmunoassay, unlabeled cardiac and skeletal muscle actins inhibited the binding of 125I-labeled cardiac actin to homologous antiserum, but neither brain actin inhibited the binding. Thus, the muscle actins possess at least one antigenic determinant not expressed by the brain actins, in addition to the shared determinants. Furthermore, cardiac actin and skeletal actin generated different inhibition curves in the cardiac actin radioimmunoassay, demonstrating that, although antigenically related, they are not identical. Correlations with existing sequence data imply that substitutions in only a few residues alter the antigenic properties of actin.

Keywords: radioimmunoassay, quantitation, antigenic differences

Full text

PDF
2069

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bourguignon L. Y., Singer S. J. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5031–5035. doi: 10.1073/pnas.74.11.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bray D., Thomas C. Unpolymerized actin in fibroblasts and brain. J Mol Biol. 1976 Aug 25;105(4):527–544. doi: 10.1016/0022-2836(76)90233-3. [DOI] [PubMed] [Google Scholar]
  3. Carlsson L., Nyström L. E., Lindberg U., Kannan K. K., Cid-Dresdner H., Lövgren S. Crystallization of a non-muscle actin. J Mol Biol. 1976 Aug 15;105(3):353–366. doi: 10.1016/0022-2836(76)90098-x. [DOI] [PubMed] [Google Scholar]
  4. Clarke M., Spudich J. A. Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Annu Rev Biochem. 1977;46:797–822. doi: 10.1146/annurev.bi.46.070177.004053. [DOI] [PubMed] [Google Scholar]
  5. Elzinga M., Maron B. J., Adelstein R. S. Human heart and platelet actins are products of different genes. Science. 1976 Jan 9;191(4222):94–95. doi: 10.1126/science.1246600. [DOI] [PubMed] [Google Scholar]
  6. Garrels J. I., Gibson W. Identification and characterization of multiple forms of actin. Cell. 1976 Dec;9(4 Pt 2):793–805. doi: 10.1016/0092-8674(76)90142-2. [DOI] [PubMed] [Google Scholar]
  7. Gröschel-Stewart U., Ceurremans S., Lehr I., Mahlmeister C., Paar E. Production of specific antibodies to contractile proteins, and their use in immunofluorescence microscopy. II. Species-specific and species-non-specific antibodies to smooth and striated chicken muscle actin. Histochemistry. 1977 Feb 1;50(4):271–279. doi: 10.1007/BF00507120. [DOI] [PubMed] [Google Scholar]
  8. Korn E. D. Biochemistry of actomyosin-dependent cell motility (a review). Proc Natl Acad Sci U S A. 1978 Feb;75(2):588–599. doi: 10.1073/pnas.75.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lazarides E. Immunofluorescence studies on the structure of actin filaments in tissue culture cells. J Histochem Cytochem. 1975 Jul;23(7):507–528. doi: 10.1177/23.7.1095651. [DOI] [PubMed] [Google Scholar]
  11. Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morgan J. L., Holladay C. R., Spooner B. S. Species-dependent immunological differences between vertebrate brain tubulins. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1414–1417. doi: 10.1073/pnas.75.3.1414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morgan J. L., Holladay C. R., Spooner B. S. Tubulin antibody inhibits in vitro polymerization independently of microtubule-associated proteins. FEBS Lett. 1978 Sep 1;93(1):141–145. doi: 10.1016/0014-5793(78)80823-0. [DOI] [PubMed] [Google Scholar]
  14. Morgan J. L., Rodkey L. S., Spooner B. S. Quantitation of cytoplasmic tubulin by radioimmunoassay. Science. 1977 Aug 5;197(4303):578–580. doi: 10.1126/science.877574. [DOI] [PubMed] [Google Scholar]
  15. Palevitz B. A., Ash J. F., Hepler P. K. Actin in the green alga, Nitella. Proc Natl Acad Sci U S A. 1974 Feb;71(2):363–366. doi: 10.1073/pnas.71.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  17. Rubenstein P. A., Spudich J. A. Actin microheterogeneity in chick embryo fibroblasts. Proc Natl Acad Sci U S A. 1977 Jan;74(1):120–123. doi: 10.1073/pnas.74.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schroeder T. E. Actin in dividing cells: contractile ring filaments bind heavy meromyosin. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1688–1692. doi: 10.1073/pnas.70.6.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  20. Spooner B. S., Ash J. F., Wessells N. K. Actin in embryonic organ epithelia. Exp Cell Res. 1978 Jul;114(2):381–387. doi: 10.1016/0014-4827(78)90496-2. [DOI] [PubMed] [Google Scholar]
  21. Spooner B. S., Ash J. F., Wrenn J. T., Frater R. B., Wessells N. K. Heavy meromyosin binding to microfilaments involved in cell and morphogenetic movements. Tissue Cell. 1973;5(1):37–46. doi: 10.1016/s0040-8166(73)80004-7. [DOI] [PubMed] [Google Scholar]
  22. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  23. Storti R. V., Coen D. M., Rich A. Tissue-specific forms of actin in the developing chick. Cell. 1976 Aug;8(4):521–527. doi: 10.1016/0092-8674(76)90220-8. [DOI] [PubMed] [Google Scholar]
  24. Thorell J. I., Johansson B. G. Enzymatic iodination of polypeptides with 125I to high specific activity. Biochim Biophys Acta. 1971 Dec 28;251(3):363–369. doi: 10.1016/0005-2795(71)90123-1. [DOI] [PubMed] [Google Scholar]
  25. Trenchev P., Holborow E. J. The specificity of anti-actin serum. Immunology. 1976 Oct;31(4):509–517. [PMC free article] [PubMed] [Google Scholar]
  26. Vandekerckhove J., Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol. 1978 Dec 25;126(4):783–802. doi: 10.1016/0022-2836(78)90020-7. [DOI] [PubMed] [Google Scholar]
  27. Vandekerckhove J., Weber K. Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1106–1110. doi: 10.1073/pnas.75.3.1106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Whalen R. G., Butler-Browne G. S., Gros F. Protein synthesis and actin heterogeneity in calf muscle cells in culture. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2018–2022. doi: 10.1073/pnas.73.6.2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wood F. T., Wu M. M., Gerhart J. C. The radioactive labeling of proteins with an iodinated amidination reagent. Anal Biochem. 1975 Dec;69(2):339–349. doi: 10.1016/0003-2697(75)90136-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES