Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1980 Apr;77(4):2348–2351. doi: 10.1073/pnas.77.4.2348

Large evoked potentials to dynamic random-dot correlograms and stereograms permit quick determination of stereopsis.

B Julesz, W Kropfl, B Petrig
PMCID: PMC348712  PMID: 6769126

Abstract

The combination of three technological innovations permits the fast and objective determination of stereopsis in nonverbal subjects: (i) It is shown that dynamic random-dot correlograms (RDC) are as effective as dynamic random-dot stereograms (RDS) in eliciting large evoked potentials (EP), and that the generation of RDC is simpler than that of RDS. (ii) The presentation of RDC in the form of red-green anaglyphs is insensitive to subjects' head tilt, because alternation of correlation (binocular fusion) with uncorrelation (binocular rivalry) does not depend on the direction of binocular disparity, whereas perception of depth in RDS does. (iii) Projection TV techniques, using backprojected large screens viewed from near distances, permit noncooperative subjects (e.g., human infants or monkeys) to be surrounded with the stimulus, so they cannot look away.

Full text

PDF
2348

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hubel D. H., Wiesel T. N. Stereoscopic vision in macaque monkey. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature. 1970 Jan 3;225(5227):41–42. doi: 10.1038/225041a0. [DOI] [PubMed] [Google Scholar]
  2. Julesz B., Breitmeyer B., Kropfi W. Binocular-disparity-dependent upper-lower hemifield anisotropy and left-right hemifield isotropy as revealed by dynamic random-dot stereograms. Perception. 1976;5(2):129–141. doi: 10.1068/p050129. [DOI] [PubMed] [Google Scholar]
  3. Julesz B., Chang J. J. Interaction between pools of binocular disparity detectors tuned to different disparities. Biol Cybern. 1976 Mar 30;22(2):107–119. doi: 10.1007/BF00320135. [DOI] [PubMed] [Google Scholar]
  4. Julesz B., Oswald H. P. Binocular utilization of monocular cues that are undetectable monocularly. Perception. 1978;7(3):315–322. doi: 10.1068/p070315. [DOI] [PubMed] [Google Scholar]
  5. Julesz B., Tyler C. W. Neurontropy, an entropy-like measure of neural correlation, in binocular fusion and rivalry. Biol Cybern. 1976 Jun 18;23(1):25–32. doi: 10.1007/BF00344148. [DOI] [PubMed] [Google Scholar]
  6. Julesz B., White B. Short term visual memory and the Pulfrich phenomenon. Nature. 1969 May 17;222(5194):639–641. doi: 10.1038/222639a0. [DOI] [PubMed] [Google Scholar]
  7. Lehmann D., Julesz B. Lateralized cortical potentials evoked in humans by dynamic random-dot stereograms. Vision Res. 1978;18(10):1265–1271. doi: 10.1016/0042-6989(78)90216-x. [DOI] [PubMed] [Google Scholar]
  8. McCarthy G., Donchin E. The effects of temporal and event uncertainty in determining the waveforms of the auditory event related potential (ERP). Psychophysiology. 1976 Nov;13(6):581–590. doi: 10.1111/j.1469-8986.1976.tb00885.x. [DOI] [PubMed] [Google Scholar]
  9. Poggio G. F., Fischer B. Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J Neurophysiol. 1977 Nov;40(6):1392–1405. doi: 10.1152/jn.1977.40.6.1392. [DOI] [PubMed] [Google Scholar]
  10. Regan D., Beverley K. I. Electrophysiological evidence for existence of neurones sensitive to direction of depth movement. Nature. 1973 Dec 21;246(5434):504–506. doi: 10.1038/246504a0. [DOI] [PubMed] [Google Scholar]
  11. Regan D., Spekreijse H. Electrophysiological correlate of binocular depth perception in man. Nature. 1970 Jan 3;225(5227):92–94. doi: 10.1038/225092a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES