Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Sep;78(9):5310–5314. doi: 10.1073/pnas.78.9.5310

Three tRNA binding sites on Escherichia coli ribosomes.

H J Rheinberger, H Sternbach, K H Nierhaus
PMCID: PMC348734  PMID: 7029532

Abstract

The binding of N-acetyl-Phe-tRNAPhe (an analogue of peptidyl-tRNA), Phe-tRNAPhe, and deacylated tRNAPhe to poly(U)-programmed tightly coupled 70S ribosomes was studied. The N-acetyl-Phe-tRNAPhe binding is governed by an exclusion principle: not more than one N-acetyl-Phe-tRNAPhe can be bound per ribosome, although this peptidyl-tRNA analogue can be present either at the aminoacyl-tRNA (A) site or the peptidyl-tRNA (P) site. Two Phe-tRNAPhe molecules are accepted by one ribosome in the presence of poly(U). This aminoacyl-tRNA binds enzymatically (in the presence of elongation factor Tu and GTP) and nonenzymatically to the A site and is then transferred to the P site, if that site is free. If this elongation factor G-independent movement is hampered, either by using an incubation temperature of 0 degrees C or by the addition of the translocation inhibitor viomycin, only one Phe-tRNAPhe per ribosome can be bound. The effect of the peptidyltransferase inhibitor chloramphenicol on the binding is similar to that of viomycin. In the absence of poly(U), Phe-tRNAPhe cannot bind to the ribosome. Deacylated [14C]tRNAPhe can bind in three copies to one ribosome. The new third tRNA binding site is called the "E" site. The sequence of filling the sites is P, E, and A. The apparent binding constants for the P and the E sites are both approximately 9 X 10(6) M-1 and that for the A site is 1.3 X 10(6) M-1. In the absence of poly(U), only one deacylated tRNAPhe can be bound per ribosome. This tRNAPhe most likely occupies the P site.

Full text

PDF
5310

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CANNON M., KRUG R., GILBERT W. THE BINDING OF S-RNA BY ESCHERICHIA COLI RIBOSOMES. J Mol Biol. 1963 Oct;7:360–378. doi: 10.1016/s0022-2836(63)80030-3. [DOI] [PubMed] [Google Scholar]
  2. De Groot N., Panet A., Lapidot Y. The binding of purified Phe-tRNA and peptidyl-tRNA Phe to Escherichia coli ribosomes. Eur J Biochem. 1971 Dec 10;23(3):523–527. doi: 10.1111/j.1432-1033.1971.tb01649.x. [DOI] [PubMed] [Google Scholar]
  3. GILBERT W. Polypeptide synthesis in Escherichia coli. II. The polypeptide chain and S-RNA. J Mol Biol. 1963 May;6:389–403. doi: 10.1016/s0022-2836(63)80051-0. [DOI] [PubMed] [Google Scholar]
  4. Haenni A. L., Lucas-Lenard J. Stepwise synthesis of a tripeptide. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1363–1369. doi: 10.1073/pnas.61.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hardesty B., Culp W., McKeehan W. The sequence of reactions leading to the synthesis of a peptide bond on reticulocyte ribosomes. Cold Spring Harb Symp Quant Biol. 1969;34:331–345. doi: 10.1101/sqb.1969.034.01.040. [DOI] [PubMed] [Google Scholar]
  6. Leder P. The elongation reactions in protein synthesis. Adv Protein Chem. 1973;27:213–242. doi: 10.1016/s0065-3233(08)60448-9. [DOI] [PubMed] [Google Scholar]
  7. Sprinzl M., Sternbach H. Enzymic modification of the C-C-A terminus of tRNA. Methods Enzymol. 1979;59:182–190. doi: 10.1016/0076-6879(79)59080-6. [DOI] [PubMed] [Google Scholar]
  8. Swan D., Sander G., Bermek E., Krämer W., Kreuzer T., Arglebe C., Zöllner R., Eckert K., Mathaei H. On the mechanism of coded binding of aminoacyl-tRNA to ribosomes: number and properties of sites. Cold Spring Harb Symp Quant Biol. 1969;34:179–196. doi: 10.1101/sqb.1969.034.01.025. [DOI] [PubMed] [Google Scholar]
  9. TRAUT R. R., MONRO R. E. THE PUROMYCIN REACTION AND ITS RELATION TO PROTEIN SYNTHESIS. J Mol Biol. 1964 Oct;10:63–72. doi: 10.1016/s0022-2836(64)80028-0. [DOI] [PubMed] [Google Scholar]
  10. WARNER J. R., RICH A. THE NUMBER OF SOLUBLE RNA MOLECULES ON RETICULOCYTE POLYRIBOSOMES. Proc Natl Acad Sci U S A. 1964 Jun;51:1134–1141. doi: 10.1073/pnas.51.6.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. WETTSTEIN F. O., NOLL H. BINDING OF TRANSFER RIBONUCLEIC ACID TO RIBOSOMES ENGAGED IN PROTEIN SYNTHESIS: NUMBER AND PROPERTIES OF RIBOSOMAL BINDING SITES. J Mol Biol. 1965 Jan;11:35–53. doi: 10.1016/s0022-2836(65)80169-3. [DOI] [PubMed] [Google Scholar]
  12. Watanabe S. Interaction of siomycin with the acceptor site of Escherichia coli ribosomes. J Mol Biol. 1972 Jun 28;67(3):443–457. doi: 10.1016/0022-2836(72)90462-7. [DOI] [PubMed] [Google Scholar]
  13. Werner R. G., Thorpe L. F., Reuter W., Nierhaus K. H. Indolmycin inhibits prokaryotic tryptophanyl-tRNA ligase. Eur J Biochem. 1976 Sep;68(1):1–3. doi: 10.1111/j.1432-1033.1976.tb10758.x. [DOI] [PubMed] [Google Scholar]
  14. Wurmbach P., Nierhaus K. H. Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site. Proc Natl Acad Sci U S A. 1979 May;76(5):2143–2147. doi: 10.1073/pnas.76.5.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wurmbach P., Nierhaus K. H. Isolation of the protein synthesis elongation factors EF-Tu, EF-Ts, and EF-G from Escherichia coli. Methods Enzymol. 1979;60:593–606. doi: 10.1016/s0076-6879(79)60056-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES