Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Sep;78(9):5381–5385. doi: 10.1073/pnas.78.9.5381

Primary structure of porcine heart citrate synthase.

D P Bloxham, D C Parmelee, S Kumar, R D Wade, L H Ericsson, H Neurath, K A Walsh, K Titani
PMCID: PMC348749  PMID: 6795632

Abstract

The sequence of 437 amino acid residues of porcine heart citrate synthase [citrate oxaloacetate-lyase (pro-3S-CH2COO leads to acetyl-CoA), EC 4. 1. 3. 7] has been determined by the alignment of fragments generated by cleavage with cyanogen bromide and with trypsin. Isolation of the peptides was facilitated by recent developments in the high-performance liquid chromatography of peptide mixtures. The alignment of these peptides was consistent with that previously deduced from fragments derived by restricted cleavage of citrate synthase by limited proteolysis and cleavage of aspartyl-prolyl bonds and asparaginyl-glycyl bonds. The enzyme contains a modified amino acid, trimethyllysine, at residue 368, showing that the enzyme is subjected to post-translational modification.

Full text

PDF
5381

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloxham D. P., Ericsson L. H., Titani K., Walsh K. A., Neurath H. Limited proteolysis of pig heart citrate synthase by subtilisin, chymotrypsin, and trypsin. Biochemistry. 1980 Aug 19;19(17):3979–3985. doi: 10.1021/bi00558a014. [DOI] [PubMed] [Google Scholar]
  2. Bornstein P. Structure of alpha-1-CB8, a large cyanogen bromide produced fragment from the alpha-1 chain of rat collagen. The nature of a hydroxylamine-sensitive bond and composition of tryptic peptides. Biochemistry. 1970 Jun 9;9(12):2408–2421. doi: 10.1021/bi00814a004. [DOI] [PubMed] [Google Scholar]
  3. Brauer A. W., Margolies M. N., Haber E. The application of 0.1 M quadrol to the microsequence of proteins and the sequence of tryptic peptides. Biochemistry. 1975 Jul;14(13):3029–3035. doi: 10.1021/bi00684a036. [DOI] [PubMed] [Google Scholar]
  4. CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
  5. DeLange R. J., Glazer A. N., Smith E. L. Identification and location of episilon-N-trimethyllysine in yeast cytochromes c. J Biol Chem. 1970 Jul 10;245(13):3325–3327. [PubMed] [Google Scholar]
  6. Dixon H. B., Perham R. N. Reversible blocking of amino groups with citraconic anhydride. Biochem J. 1968 Sep;109(2):312–314. doi: 10.1042/bj1090312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dognin M. J., Wittmann-Liebold B. The primary structure of L11, the most heavily methylated protein from Escherichia coli ribosomes. FEBS Lett. 1977 Dec 15;84(2):342–346. doi: 10.1016/0014-5793(77)80721-7. [DOI] [PubMed] [Google Scholar]
  8. Edman P., Begg G. A protein sequenator. Eur J Biochem. 1967 Mar;1(1):80–91. doi: 10.1007/978-3-662-25813-2_14. [DOI] [PubMed] [Google Scholar]
  9. Eggerer H. Zum Mechanismus der biologischen Umwandlung von Citronensäure. VI. Citrat-synthase ist eine Acetyl-Co A-Enolase. Biochem Z. 1965 Nov 15;343(2):111–138. [PubMed] [Google Scholar]
  10. Eldik L. J., Grossman A. R., Iverson D. B., Watterson D. M. Isolation and characterization of calmodulin from spinach leaves and in vitro translation mixtures. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1912–1916. doi: 10.1073/pnas.77.4.1912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GROSS E., WITKOP B. Nonenzymatic cleavage of peptide bonds: the methionine residues in bovine pancreatic ribonuclease. J Biol Chem. 1962 Jun;237:1856–1860. [PubMed] [Google Scholar]
  12. Gerber G. E., Anderegg R. J., Herlihy W. C., Gray C. P., Biemann K., Khorana H. G. Partial primary structure of bacteriorhodopsin: sequencing methods for membrane proteins. Proc Natl Acad Sci U S A. 1979 Jan;76(1):227–231. doi: 10.1073/pnas.76.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HANSON K. R., ROSE I. A. THE ABSOLUTE STEREOCHEMICAL COURSE OF CITRIC ACID BIOSYNTHESIS. Proc Natl Acad Sci U S A. 1963 Nov;50:981–988. doi: 10.1073/pnas.50.5.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HIRS C. H., MOORE S., STEIN W. H. Peptides obtained by tryptic hydrolysis of performic acid-oxidized ribonuclease. J Biol Chem. 1956 Apr;219(2):623–642. [PubMed] [Google Scholar]
  15. Houmard J., Drapeau G. R. Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3506–3509. doi: 10.1073/pnas.69.12.3506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lenz H., Buckel W., Wunderwald P., Biedermann G., Buschmeier V., Eggerer H., Cornforth J. W., Redmond J. W., Mallaby R. Stereochemistry of si-citrate synthase and ATP-citrate-lyase reactions. Eur J Biochem. 1971 Dec;24(2):207–215. doi: 10.1111/j.1432-1033.1971.tb19672.x. [DOI] [PubMed] [Google Scholar]
  17. Mahoney W. C., Hermodson M. A. Separation of large denatured peptides by reverse phase high performance liquid chromatography. Trifluoroacetic acid as a peptide solvent. J Biol Chem. 1980 Dec 10;255(23):11199–11203. [PubMed] [Google Scholar]
  18. Morihara K., Oka T., Tsuzuki H. Comparison of alpha-chymotrypsin and subtilisin BPN': size and specificity of the active site. Biochem Biophys Res Commun. 1969 Apr 29;35(2):210–214. doi: 10.1016/0006-291x(69)90269-1. [DOI] [PubMed] [Google Scholar]
  19. Omenn G. S., Fontana A., Anfinsen C. B. Modification of the single tryptophan residue of staphylococcal nuclease by a new mild oxidizing agent. J Biol Chem. 1970 Apr 25;245(8):1895–1902. [PubMed] [Google Scholar]
  20. Paik W. K., Kim S. Solubilization and partial purification of protein methylase 3 from calf thymus nuclei. J Biol Chem. 1970 Nov 25;245(22):6010–6015. [PubMed] [Google Scholar]
  21. Piszkiewicz D., Landon M., Smith E. L. Anomalous cleavage of aspartyl-proline peptide bonds during amino acid sequence determinations. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1173–1178. doi: 10.1016/0006-291x(70)90918-6. [DOI] [PubMed] [Google Scholar]
  22. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  23. Schroeder W. A., Shelton J. B., Shelton J. R. An examination of conditions for the cleavage of polypeptide chains with cyanogen bromide: application to catalase. Arch Biochem Biophys. 1969 Mar;130(1):551–556. doi: 10.1016/0003-9861(69)90069-1. [DOI] [PubMed] [Google Scholar]
  24. Singh M., Brooks G. C., Srere P. A. Subunit structure and chemical characteristics of pig heart citrate synthase. J Biol Chem. 1970 Sep 25;245(18):4636–4640. [PubMed] [Google Scholar]
  25. Srere P. A. The enzymology of the formation and breakdown of citrate. Adv Enzymol Relat Areas Mol Biol. 1975;43:57–101. doi: 10.1002/9780470122884.ch2. [DOI] [PubMed] [Google Scholar]
  26. Tsugita A., Gish D. T., Young J., Fraenkel-Conrat H., Knight C. A., Stanley W. M. THE COMPLETE AMINO ACID SEQUENCE OF THE PROTEIN OF TOBACCO MOSAIC VIRUS. Proc Natl Acad Sci U S A. 1960 Nov;46(11):1463–1469. doi: 10.1073/pnas.46.11.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Waxdal M. J., Konigsberg W. H., Henley W. L., Edelman G. M. The covalent structure of a human gamma G-immunoglobulin. II. Isolation and characterization of the cyanogen bromide fragments. Biochemistry. 1968 May;7(5):1959–1966. doi: 10.1021/bi00845a046. [DOI] [PubMed] [Google Scholar]
  28. Weitzman P. D., Danson M. J. Citrate synthase. Curr Top Cell Regul. 1976;10:161–204. doi: 10.1016/b978-0-12-152810-2.50011-5. [DOI] [PubMed] [Google Scholar]
  29. Wiegand G., Kukla D., Scholze H., Jones T. A., Huber R. Crystal structure analysis of the tetragonal crystal form are preliminary molecular model of pig-heart citrate synthase. Eur J Biochem. 1979 Jan 2;93(1):41–50. doi: 10.1111/j.1432-1033.1979.tb12792.x. [DOI] [PubMed] [Google Scholar]
  30. YAOI Y., TITANI K., NARITA K. N- AND C-TERMINAL RESIDUES IN BAKER'S YEAST CYTOCHROME C. J Biochem. 1964 Sep;56:222–229. doi: 10.1093/oxfordjournals.jbchem.a127984. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES