Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Sep;78(9):5573–5577. doi: 10.1073/pnas.78.9.5573

Photoreception in Neurospora crassa: correlation of reduced light sensitivity with flavin deficiency.

J Paietta, M L Sargent
PMCID: PMC348791  PMID: 6458042

Abstract

The effect of flavin deficiency on blue light responses in Neurospora crassa was studied through the use of two riboflavin mutants (rib-1 and rib-2). The photoresponses assayed were the suppression of circadian conidiation, the phase shifting of the circadian conidiation rhythm, and the induction of carotenoid synthesis. Flavin deficiency was induced in the rib-1 mutant by restrictive growth temperatures and in the rib-2 mutant by low levels of supplemental riboflavin. At 26 degrees C, a semirestrictive growth temperature, the rib-1 mutant is about 1/80th as sensitive to light for the photosuppression of circadian conidiation. Flavin deficiency in the rib-1 and rib-2 strains was effective in reducing the photosensitivity for phase shifting and carotenogenesis to about 1/16th and 1/4th of normal, respectively. Experiments with permissive temperatures, riboflavin supplementation, and revertants at the rib locus all indicated that the effects on light sensitivity were due solely to the presence of the rib mutations. These results provide evidence that one or more flavin photoreceptors are involved in the blue light responses of Neurospora.

Full text

PDF
5573

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brain R. D., Freeberg J. A., Weiss C. V., Briggs W. R. Blue light-induced Absorbance Changes in Membrane Fractions from Corn and Neurospora. Plant Physiol. 1977 May;59(5):948–952. doi: 10.1104/pp.59.5.948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Delbrück M., Shropshire W. Action and Transmission Spectra of Phycomyces. Plant Physiol. 1960 Mar;35(2):194–204. doi: 10.1104/pp.35.2.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Francis C. D., Sargent M. L. Effects of temperature perturbations on circadian conidiation in neurospora. Plant Physiol. 1979 Dec;64(6):1000–1004. doi: 10.1104/pp.64.6.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harding R. W. The Effect of Temperature on Photo-induced Carotenoid Biosynthesis in Neurospora crassa. Plant Physiol. 1974 Aug;54(2):142–147. doi: 10.1104/pp.54.2.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. MASSEY V., SWOBODA B. E. THE FLAVIN COMPOSITION OF PIG HEART MUSCLE PREPARATIONS. Biochem Z. 1963;338:474–484. [PubMed] [Google Scholar]
  6. Mayhew S. G., Massey V. Purification and characterization of flavodoxin from Peptostreptococcus elsdenii. J Biol Chem. 1969 Feb 10;244(3):794–802. [PubMed] [Google Scholar]
  7. Mayhew S. G. Studies on flavin binding in flavodoxins. Biochim Biophys Acta. 1971 May 12;235(2):289–302. doi: 10.1016/0005-2744(71)90207-5. [DOI] [PubMed] [Google Scholar]
  8. Mayhew S. G., Wassink J. H. Determination of FMN and FAD by fluorescence titration with apoflavodoxin. Methods Enzymol. 1980;66:217–220. doi: 10.1016/0076-6879(80)66461-1. [DOI] [PubMed] [Google Scholar]
  9. Muñoz V., Butler W. L. Photoreceptor Pigment for Blue Light in Neurospora crassa. Plant Physiol. 1975 Feb;55(2):421–426. doi: 10.1104/pp.55.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. NICHOLAS D. J. Trace metal requirements and some enzyme systems in a riboflavin-requiring mutant of Neurospora crassa. J Gen Microbiol. 1956 Dec;15(3):470–477. doi: 10.1099/00221287-15-3-470. [DOI] [PubMed] [Google Scholar]
  11. Nemerofsky A. The interactive effect of ultraviolet irradiation and 5-bromouracil at the rib-1 locus in Neurospora crassa. Can J Genet Cytol. 1975 Jun;17(2):275–278. doi: 10.1139/g75-036. [DOI] [PubMed] [Google Scholar]
  12. Ramadan-Talib Z., Prebble J. Photosensitivity of respiration in Neurospora mitochondria. A protective role for carotenoid. Biochem J. 1978 Dec 15;176(3):767–775. doi: 10.1042/bj1760767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sargent M. L., Briggs W. R., Woodward D. O. Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol. 1966 Oct;41(8):1343–1349. doi: 10.1104/pp.41.8.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sargent M. L., Kaltenborn S. H. Effects of medium composition and carbon dioxide on circadian conidiation in neurospora. Plant Physiol. 1972 Jul;50(1):171–175. doi: 10.1104/pp.50.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wassink J. H., Mayhew S. G. Fluorescence titration with apoflavodoxin: a sensitive assay for riboflavin 5'-phosphate and flavin adenine dinucleotide in mixtures. Anal Biochem. 1975 Oct;68(2):609–616. doi: 10.1016/0003-2697(75)90656-9. [DOI] [PubMed] [Google Scholar]
  16. YAGI K. Chemical determination of flavins. Methods Biochem Anal. 1962;10:319–356. doi: 10.1002/9780470110270.ch10. [DOI] [PubMed] [Google Scholar]
  17. ZALOKAR M. Biosynthesis of carotenoids in Neurospora; action spectrum of photoactivation. Arch Biochem Biophys. 1955 Jun;56(2):318–325. doi: 10.1016/0003-9861(55)90252-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES