Abstract
Human growth hormone (hGH) and ovine prolactin (oPRL) are both lactogenic as defined by their ability to induce milk-protein synthesis in vitro in the presence of insulin and hydrocortisone. At physiological concentrations, both hGH and oPRL have similar dose-response curves in a mouse mammary gland organ culture system. Binding of 125I-labeled hGH (125I-hGH) to lactogenic receptors is competed by both hGH and oPRL, and the competition curves are nearly superimposable. Moreover, solubilized membrane proteins bound with either 125I-hGH or 125I-labeled oPRL (125I-oPRL) show the same sedimentation pattern on sucrose gradients. However, methylation of membrane phospholipids in the presence of the methyl donor S-adenosyl-L-methionine only increases the binding of 125I-hGH. Binding of either 125I-oPRL or 125I-labeled bovine growth hormone (125I-bGH) was unaffected. Addition of concanavalin A (Con A) to the membranes decreased binding of 125I-oPRL to the lactogenic site by 80%, whereas 125I-hGH binding was decreased by only 40%, with the binding of 125I-bGH unaffected. However, both hGH-and oPRL-bound proteins bind to Con A-Sepharose columns to the same extent. These results suggest that although hGH and oPRL bind to the same lactogenic site with similar affinities and elicit similar biological responses, modification of membranes either by phospholipid methylation or by Con A differentially affects the binding of these two hormones.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ben-Bassat H., Goldblum N., Manny N., Sachs L. Mobility of Concanavalin A receptors on the surface membrane of lymphocytes from normal persons and patients with chronic lymphocytic leukemia. Int J Cancer. 1974 Sep 15;14(3):367–371. doi: 10.1002/ijc.2910140310. [DOI] [PubMed] [Google Scholar]
- Bewley T. A., Li C. H. Primary structures of human pituitary growth hormone and sheep pituitary lactogenic hormone compared. Science. 1970 Jun 12;168(3937):1361–1362. doi: 10.1126/science.168.3937.1361. [DOI] [PubMed] [Google Scholar]
- Bhattacharya A., Vonderhaar B. K. Phospholipid methylation stimulates lactogenic binding in mouse mammary gland membranes. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4489–4492. doi: 10.1073/pnas.76.9.4489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonifacino J. S., Sánchez S. H., Paladini A. C. Solubilization of the lactogenic receptors from rat liver microsomes. Biochem Biophys Res Commun. 1978 Nov 14;85(1):62–69. doi: 10.1016/s0006-291x(78)80011-4. [DOI] [PubMed] [Google Scholar]
- Costlow M. E., Gallagher P. E. Concanavalin A induced alterations in 125I-labeled prolactin binding. Biochem Biophys Res Commun. 1977 Aug 8;77(3):905–911. doi: 10.1016/s0006-291x(77)80063-6. [DOI] [PubMed] [Google Scholar]
- Costlow M. E., Gallagher P. E. Relationship of prolactin receptors to concanavalin A binding. Biochim Biophys Acta. 1979 Oct 4;587(2):192–201. doi: 10.1016/0304-4165(79)90353-2. [DOI] [PubMed] [Google Scholar]
- Cuatrecasas P. Membrane receptors. Annu Rev Biochem. 1974;43(0):169–214. doi: 10.1146/annurev.bi.43.070174.001125. [DOI] [PubMed] [Google Scholar]
- Doneen B. A. Biological activities of mammalian and teleostean prolactins and growth hormones on mouse mammary gland and teleost urinary bladder. Gen Comp Endocrinol. 1976 Sep;30(1):34–42. doi: 10.1016/0016-6480(76)90063-0. [DOI] [PubMed] [Google Scholar]
- Hirata F., Axelrod J. Enzymatic methylation of phosphatidylethanolamine increases erythrocyte membrane fluidity. Nature. 1978 Sep 21;275(5677):219–220. doi: 10.1038/275219a0. [DOI] [PubMed] [Google Scholar]
- Inbar M., Shinitzky M., Sachs L. Rotational relaxation time of concanavalin A bound to the surface membrane of normal and malignant transformed cells. J Mol Biol. 1973 Dec 5;81(2):245–253. doi: 10.1016/0022-2836(73)90192-7. [DOI] [PubMed] [Google Scholar]
- Juergens W. G., Stockdale F. E., Topper Y. J., Elias J. J. Hormone-dependent differentiation of mammary gland in vitro. Proc Natl Acad Sci U S A. 1965 Aug;54(2):629–634. doi: 10.1073/pnas.54.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kahn C. R. Membrane receptors for hormones and neurotransmitters. J Cell Biol. 1976 Aug;70(2 Pt 1):261–286. doi: 10.1083/jcb.70.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinberg D. L., Todd J. alpha-Lactalbumin in human and subhuman primate normal mammary tissue and in human breast cancer as a marker for prolactin activity. Cancer Res. 1978 Nov;38(11 Pt 2):4318–4322. [PubMed] [Google Scholar]
- Knazek R. A., Liu S. C., Gullino P. M. Induction of lactogenic binding sites in the liver of the Snell dwarf mouse. Endocrinology. 1977 Jul;101(1):50–58. doi: 10.1210/endo-101-1-50. [DOI] [PubMed] [Google Scholar]
- Kono T., Barham F. W. The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin. Studies with intact and trypsin-treated fat cells. J Biol Chem. 1971 Oct 25;246(20):6210–6216. [PubMed] [Google Scholar]
- Patton S. Reversible suppression of milk secretion by concanavalin A. FEBS Lett. 1976 Nov 15;72(1):154–156. doi: 10.1016/0014-5793(76)80919-2. [DOI] [PubMed] [Google Scholar]
- Posner B. I. Characterization and modulation of growth hormone and prolactin binding in mouse liver. Endocrinology. 1976 Mar;98(3):645–654. doi: 10.1210/endo-98-3-645. [DOI] [PubMed] [Google Scholar]
- Posner B. I., Kelly P. A., Shiu R. P., Friesen H. G. Studies of insulin, growth hormone and prolactin binding: tissue distribution, species variation and characterization. Endocrinology. 1974 Aug;95(2):521–531. doi: 10.1210/endo-95-2-521. [DOI] [PubMed] [Google Scholar]
- Shiu R. P., Friesen H. G. Properties of a prolactin receptor from the rabbit mammary gland. Biochem J. 1974 May;140(2):301–311. doi: 10.1042/bj1400301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiu R. P., Friesen H. G. Solubilization and purification of a prolactin receptor from the rabbit mammary gland. J Biol Chem. 1974 Dec 25;249(24):7902–7911. [PubMed] [Google Scholar]
- Vonderhaar B. K. Studies on the mechanism by which thyroid hormones enhance alpha-lactalbumin activity in explants from mouse mammary glands. Endocrinology. 1977 May;100(5):1423–1431. doi: 10.1210/endo-100-5-1423. [DOI] [PubMed] [Google Scholar]
- Waters M. J., Friesen H. G. Purification and partial characterization of a nonprimate growth hormone receptor. J Biol Chem. 1979 Jul 25;254(14):6815–6825. [PubMed] [Google Scholar]
- Waters M. J., Friesen H. G. Studies with anti-growth hormone receptor antibodies. J Biol Chem. 1979 Jul 25;254(14):6826–6832. [PubMed] [Google Scholar]
- Welsch C. W., Dombroske S. E., McManus M. J., Calaf G. Effect of human, bovine and ovine prolactin on DNA synthesis by organ cultures of benign human breast tumours. Br J Cancer. 1979 Dec;40(6):866–871. doi: 10.1038/bjc.1979.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yahara I., Edelman G. M. Restriction of the mobility of lymphocyte immunoglobulin receptors by concanavalin A. Proc Natl Acad Sci U S A. 1972 Mar;69(3):608–612. doi: 10.1073/pnas.69.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zagyansky Y. A., Jard S. Does lectin-receptor complex formation produce zones of restricted mobility within the membrane? Nature. 1979 Aug 16;280(5723):591–593. doi: 10.1038/280591a0. [DOI] [PubMed] [Google Scholar]