Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Sep;78(9):5778–5782. doi: 10.1073/pnas.78.9.5778

Mitotic chromosome loss in a radiation-sensitive strain of the yeast Saccharomyces cerevisiae.

R K Mortimer, R Contopoulou, D Schild
PMCID: PMC348859  PMID: 7029545

Abstract

Cells of Saccharomyces cerevisiae with mutations in the RAD52 gene have previously been shown to be defective in meiotic and mitotic recombination, in sporulation, and in repair of radiation-induced damage to DNA. In this study we show that diploid cells homozygous for rad52 lose chromosomes at high frequencies and that these frequencies of loss can be increased dramatically by exposure of these cells to x-rays. Genetic analyses of survivors of x-ray treatment demonstrate that chromosome loss events result in the conversion of diploid cells to cells with near-haploid chromosome numbers.

Full text

PDF
5778

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker B. S., Boyd J. B., Carpenter A. T., Green M. M., Nguyen T. D., Ripoll P., Smith P. D. Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4140–4144. doi: 10.1073/pnas.73.11.4140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baker B. S., Carpenter A. T., Esposito M. S., Esposito R. E., Sandler L. The genetic control of meiosis. Annu Rev Genet. 1976;10:53–134. doi: 10.1146/annurev.ge.10.120176.000413. [DOI] [PubMed] [Google Scholar]
  3. Cooper S. F., Zimmering S. A genetic study of the effects of the repair-deficient mei-9a mutation in Drosophila on spontaneous and X-ray-induced paternal sex chromosome loss. Mutat Res. 1981 Feb;80(2):281–287. doi: 10.1016/0027-5107(81)90101-9. [DOI] [PubMed] [Google Scholar]
  4. Forte M. A., Fangman W. L. Yeast chromosomal DNA molecules have strands which are cross-linked at their termini. Chromosoma. 1979 Apr 30;72(2):131–150. doi: 10.1007/BF00293230. [DOI] [PubMed] [Google Scholar]
  5. Game J. C., Mortimer R. K. A genetic study of x-ray sensitive mutants in yeast. Mutat Res. 1974 Sep;24(3):281–292. doi: 10.1016/0027-5107(74)90176-6. [DOI] [PubMed] [Google Scholar]
  6. Game J. C., Zamb T. J., Braun R. J., Resnick M., Roth R. M. The Role of Radiation (rad) Genes in Meiotic Recombination in Yeast. Genetics. 1980 Jan;94(1):51–68. doi: 10.1093/genetics/94.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gatti M. Genetic control of chromosome breakage and rejoining in Drosophila melanogaster: spontaneous chromosome aberrations in X-linked mutants defective in DNA metabolism. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1377–1381. doi: 10.1073/pnas.76.3.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gatti M., Pimpinelli S., Baker B. S. Relationships among chromatid interchanges, sister chromatid exchanges, and meiotic recombination in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1575–1579. doi: 10.1073/pnas.77.3.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Henry S. A., Fogel S. Saturated fatty acid mutants in yeast. Mol Gen Genet. 1971;113(1):1–19. doi: 10.1007/BF00335003. [DOI] [PubMed] [Google Scholar]
  10. Ho K. S. Induction of DNA double-strand breaks by X-rays in a radiosensitive strain of the yeast Saccharomyces cerevisiae. Mutat Res. 1975 Dec;30(3):327–334. [PubMed] [Google Scholar]
  11. Holliday R., Halliwell R. E., Evans M. W., Rowell V. Genetic characterization of rec-1, a mutant of Ustilago maydis defective in repair and recombination. Genet Res. 1976 Jun;27(3):413–453. doi: 10.1017/s0016672300016621. [DOI] [PubMed] [Google Scholar]
  12. Liras P., McCusker J., Mascioli S., Haber J. E. Characterization of a mutation in yeast causing nonrandom chromosome loss during mitosis. Genetics. 1978 Apr;88(4 Pt 1):651–671. [PMC free article] [PubMed] [Google Scholar]
  13. Malone R. E., Esposito R. E. The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc Natl Acad Sci U S A. 1980 Jan;77(1):503–507. doi: 10.1073/pnas.77.1.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mortimer R. K., Hawthorne D. C. Genetic Mapping in Saccharomyces IV. Mapping of Temperature-Sensitive Genes and Use of Disomic Strains in Localizing Genes. Genetics. 1973 May;74(1):33–54. doi: 10.1093/genetics/74.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nakai S., Mortimer R. K. Studies on the genetic mechanism of radiation-induced mitotic segregation in yeast. Mol Gen Genet. 1969;103(4):329–338. doi: 10.1007/BF00383483. [DOI] [PubMed] [Google Scholar]
  16. Parry E. M., Cox B. S. The tolerance of aneuploidy in yeast. Genet Res. 1970 Dec;16(3):333–340. doi: 10.1017/s0016672300002597. [DOI] [PubMed] [Google Scholar]
  17. Parry J. M., Sharp D., Tippins R. S., Parry E. M. Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae. Mutat Res. 1979 Jun;61(1):37–55. doi: 10.1016/0027-5107(79)90005-8. [DOI] [PubMed] [Google Scholar]
  18. Prakash S., Prakash L., Burke W., Montelone B. A. Effects of the RAD52 Gene on Recombination in SACCHAROMYCES CEREVISIAE. Genetics. 1980 Jan;94(1):31–50. doi: 10.1093/genetics/94.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Resnick M. A. Genetic control of radiation sensitivity in Saccharomyces cerevisiae. Genetics. 1969 Jul;62(3):519–531. doi: 10.1093/genetics/62.3.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Resnick M. A., Martin P. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol Gen Genet. 1976 Jan 16;143(2):119–129. doi: 10.1007/BF00266917. [DOI] [PubMed] [Google Scholar]
  21. Roman H, Phillips M M, Sands S M. Studies of Polyploid Saccharomyces. I. Tetraploid Segregation. Genetics. 1955 Jul;40(4):546–561. doi: 10.1093/genetics/40.4.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Saeki T., Machida I., Nakai S. Genetic control of diploid recovery after gamma-irradiation in the yeast Saccharomyces cerevisiae. Mutat Res. 1980 Dec;73(2):251–265. doi: 10.1016/0027-5107(80)90192-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES