Abstract
It was found that digitonin-permeabilized resting gastric glands retained considerable acid-secretory ability. Oligomycin abolished this, and ATP was able to bypass this inhibition and restore acid secretion. Moreover, the effect of anoxia was also bypassed by ATP in these preparations. As in intact glands, acid secretion was K+ dependent, and the concentration for half-maximal effect was 18.5 +/- 1.76 mM in Na+-free solutions, a value similar to that found for resting intact glands. The slight inhibition of ATP-dependent secretion by either valinomycin or 2,4-dinitrophenol, but total inhibition by a combination of the ionophores, is interpreted to mean that, in resting gastric glands, the in situ proton pump is electroneutral and the KCl pathway supplying K+ to the luminal face of the pump is probably electroneutral.
Full text
PDF![5908](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e92/348905/709a0360c1a7/pnas00660-0671.png)
![5909](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e92/348905/8d1cc00afdef/pnas00660-0672.png)
![5910](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e92/348905/641cc4e7addd/pnas00660-0673.png)
![5911](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e92/348905/af4de2bd661c/pnas00660-0674.png)
![5912](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e92/348905/362eb2f5b79f/pnas00660-0675.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akiyama T., Takagi S., Sankawa U., Inari S., Saitô H. Saponin-cholesterol interaction in the multibilayers of egg yolk lecithin as studied by deuterium nuclear magnetic resonance: digitonin and its analogues. Biochemistry. 1980 Apr 29;19(9):1904–1911. doi: 10.1021/bi00550a027. [DOI] [PubMed] [Google Scholar]
- Andreoli T. E., Tieffenberg M., Tosteson D. C. The effect of valinomycin on the ionic permeability of thin lipid membranes. J Gen Physiol. 1967 Dec;50(11):2527–2545. doi: 10.1085/jgp.50.11.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker G. L., Fiskum G., Lehninger A. L. Regulation of free Ca2+ by liver mitochondria and endoplasmic reticulum. J Biol Chem. 1980 Oct 10;255(19):9009–9012. [PubMed] [Google Scholar]
- Berglindh T., Dibona D. R., Pace C. S., Sachs G. ATP dependence of H+ secretion. J Cell Biol. 1980 May;85(2):392–401. doi: 10.1083/jcb.85.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berglindh T., Helander H. F., Obrink K. J. Effects of secretagogues on oxygen consumption, aminopyrine accumulation and morphology in isolated gastric glands. Acta Physiol Scand. 1976 Aug;97(4):401–414. doi: 10.1111/j.1748-1716.1976.tb10281.x. [DOI] [PubMed] [Google Scholar]
- Berglindh T., Obrink K. J. A method for preparing isolated glands from the rabbit gastric mucosa. Acta Physiol Scand. 1976 Feb;96(2):150–159. doi: 10.1111/j.1748-1716.1976.tb10184.x. [DOI] [PubMed] [Google Scholar]
- Chang H., Saccomani G., Rabon E., Schackmann R., Sachs G. Proton transport by gastric membrane vesicles. Biochim Biophys Acta. 1977 Jan 21;464(2):313–327. doi: 10.1016/0005-2736(77)90006-2. [DOI] [PubMed] [Google Scholar]
- Colbeau A., Nachbaur J., Vignais P. M. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta. 1971 Dec 3;249(2):462–492. doi: 10.1016/0005-2736(71)90123-4. [DOI] [PubMed] [Google Scholar]
- DAVENPORT H. W., CHAVRE V. J. Conditions affecting acid secretion by mouse stomachs in vitro. Gastroenterology. 1950 Jul;15(3):467–480. [PubMed] [Google Scholar]
- DiBona D. R., Ito S., Berglindh T., Sachs G. Cellular site of gastric acid secretion. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6689–6693. doi: 10.1073/pnas.76.12.6689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubinsky W. P., Cockrell R. S. Ca2+ transport across plasma and mitochondrial membranes of isolated hepatocytes. FEBS Lett. 1975 Nov 1;59(1):39–43. doi: 10.1016/0014-5793(75)80336-x. [DOI] [PubMed] [Google Scholar]
- Ganser A. L., Forte J. G. K + -stimulated ATPase in purified microsomes of bullfrog oxyntic cells. Biochim Biophys Acta. 1973 Apr 25;307(1):169–180. doi: 10.1016/0005-2736(73)90035-7. [DOI] [PubMed] [Google Scholar]
- HARRIS J. B., FRANK H., EDELMAN I. S. Effect of potassium on ion transport and bioelectric potentials of frog gastric mucosa. Am J Physiol. 1958 Nov;195(2):499–504. doi: 10.1152/ajplegacy.1958.195.2.499. [DOI] [PubMed] [Google Scholar]
- HOGBEN C. A. M. The chloride transport system of the gastric mucosa. Proc Natl Acad Sci U S A. 1951 Jul;37(7):393–395. doi: 10.1073/pnas.37.7.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hersey S. J. Interactions between oxidative metabolism and acid secretion in gastric mucosa. Biochim Biophys Acta. 1974 Sep 16;344(2):157–203. doi: 10.1016/0304-4157(74)90003-3. [DOI] [PubMed] [Google Scholar]
- LARDY H. A., JOHNSON D., McMURRAY W. C. Antibiotics as tools for metabolic studies. I. A survey of toxic antibiotics in respiratory, phosphorylative and glycolytic systems. Arch Biochem Biophys. 1958 Dec;78(2):587–597. doi: 10.1016/0003-9861(58)90383-7. [DOI] [PubMed] [Google Scholar]
- Lee J., Simpson G., Scholes P. An ATPase from dog gastric mucosa: changes of outer pH in suspensions of membrane vesicles accompanying ATP hydrolysis. Biochem Biophys Res Commun. 1974 Sep 23;60(2):825–832. doi: 10.1016/0006-291x(74)90315-5. [DOI] [PubMed] [Google Scholar]
- Rabon E., Saccomani G., Kasbekar D. K., Sachs G. Transport characteristics of frog gastric membranes. Biochim Biophys Acta. 1979 Mar 8;551(2):432–447. doi: 10.1016/0005-2736(89)90018-7. [DOI] [PubMed] [Google Scholar]
- Rehm W. S. Electrophysiology of the gastric mucosa in chloride-free solutions. Fed Proc. 1965 Nov-Dec;24(6):1387–1395. [PubMed] [Google Scholar]
- Rehm W. S., Sanders S. S. Electrical events during activation and inhibition of gastric HCl secretion. Gastroenterology. 1977 Oct;73(4 Pt 2):959–969. [PubMed] [Google Scholar]
- Saccomani G., Helander H. F., Crago S., Chang H. H., Dailey D. W., Sachs G. Characterization of gastric mucosal membranes. X. Immunological studies of gastric (H+ + K+)-ATPase. J Cell Biol. 1979 Nov;83(2 Pt 1):271–283. doi: 10.1083/jcb.83.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sachs G., Chang H. H., Rabon E., Schackman R., Lewin M., Saccomani G. A nonelectrogenic H+ pump in plasma membranes of hog stomach. J Biol Chem. 1976 Dec 10;251(23):7690–7698. [PubMed] [Google Scholar]
- Schackmann R., Schwartz A., Saccomani G., Sachs G. Cation transport by gastric H+:K+ ATPase. J Membr Biol. 1977 Apr 22;32(3-4):361–381. doi: 10.1007/BF01905228. [DOI] [PubMed] [Google Scholar]
- Stewart B., Wallmark B., Sachs G. The interaction of H+ and K+ with the partial reactions of gastric (H+ + K+)-ATPase. J Biol Chem. 1981 Mar 25;256(6):2682–2690. [PubMed] [Google Scholar]
- VAN GRONINGENH, SLATER E. C. THE EFFECT OF OLIGOMYCIN ON THE (NA+ + K+)-ACTIVATED MAGNESIUM ATPASE OF BRAIN MICROSOMES AND ERYTHROCYTE MEMBRANE. Biochim Biophys Acta. 1963 Jul 9;73:527–530. doi: 10.1016/0006-3002(63)90460-8. [DOI] [PubMed] [Google Scholar]
- Zuurendonk P. F., Tager J. M. Rapid separation of particulate components and soluble cytoplasm of isolated rat-liver cells. Biochim Biophys Acta. 1974 Feb 22;333(2):393–399. doi: 10.1016/0005-2728(74)90022-x. [DOI] [PubMed] [Google Scholar]