Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Oct;78(10):5968–5972. doi: 10.1073/pnas.78.10.5968

Chicken erythrocyte nucleus contains two classes of chromatin that differ in micrococcal nuclease susceptibility and solubility at physiological ionic strength.

A W Fulmer, V A Bloomfield
PMCID: PMC348958  PMID: 6947211

Abstract

Inactive chromatin of the chicken erythrocyte nucleus is shown to consist of two distinct classes (I and S). I chromatin (approximately 60% of the total genome) is insoluble at greater than 0.1 M ionic strength whereas S chromatin (approximately 40% of the total genome) is soluble at all ionic strengths studied (0.01--0.3 M). These chromatins are released from nuclei upon digestion with micrococcal nuclease by two separate parallel processes that do not have a precursor--product relationship to each other. Isolated I-chromatin fragments show a progressive reduction in size from 250 to approximately 50 nucleosome equivalents with increasing digestion times at 0-2 degrees C. Prolonged digestion of nuclei at 37 degrees C results in conversion of I chromatin to mononucleosomes that are insoluble at greater than 30 mM NaCl. Isolated S-chromatin fragments show a constant size distribution, independent of digestion time, that peaks at approximately 35 nucleosome equivalents. Prolonged digestion of nuclei at 37 degrees C results in the conversion of S chromatin to mononucleosomes that are soluble at physiological ionic strength. Both I and S chromatins contain a full complement of histones with no nonhistone proteins.

Full text

PDF
5968

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brasch K., Seligy V. L., Setterfield G. Effects of low salt concentration on structural organization and template activity of chromatin in chicken erythrocyte nuclei. Exp Cell Res. 1971 Mar;65(1):61–72. doi: 10.1016/s0014-4827(71)80050-2. [DOI] [PubMed] [Google Scholar]
  2. Butler P. J., Thomas J. O. Changes in chromatin folding in solution. J Mol Biol. 1980 Jul 15;140(4):505–529. doi: 10.1016/0022-2836(80)90268-5. [DOI] [PubMed] [Google Scholar]
  3. Camerini-Otero R. D., Sollner-Webb B., Felsenfeld G. The organization of histones and DNA in chromatin: evidence for an arginine-rich histone kernel. Cell. 1976 Jul;8(3):333–347. doi: 10.1016/0092-8674(76)90145-8. [DOI] [PubMed] [Google Scholar]
  4. Campbell A. M., Cotter R. I., Pardon J. F. Light scattering measurements supporting helical structures for chromatin in solution. Nucleic Acids Res. 1978 May;5(5):1571–1580. doi: 10.1093/nar/5.5.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell A. M., Cotter R. I. Subunit associations among chromatin particles. Nucleic Acids Res. 1977 Nov;4(11):3877–3886. doi: 10.1093/nar/4.11.3877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carpenter B. G., Baldwin J. P., Bradbury E. M., Ibel K. Organisation of subunits in chromatin. Nucleic Acids Res. 1976 Jul;3(7):1739–1746. doi: 10.1093/nar/3.7.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Felsenfeld G. Chromatin. Nature. 1978 Jan 12;271(5641):115–122. doi: 10.1038/271115a0. [DOI] [PubMed] [Google Scholar]
  8. Finch J. T., Klug A. Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1897–1901. doi: 10.1073/pnas.73.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fulmer A. W., Fasman G. D. Analysis of chromatin reconstitutiion. Biochemistry. 1979 Feb 20;18(4):659–668. doi: 10.1021/bi00571a017. [DOI] [PubMed] [Google Scholar]
  10. Gurley L. R., Walters R. A., Barham S. S., Deaven L. L. Heterochromatin and histone phosphorylation. Exp Cell Res. 1978 Feb;111(2):373–383. doi: 10.1016/0014-4827(78)90182-9. [DOI] [PubMed] [Google Scholar]
  11. Hozier J., Renz M., Nehls P. The chromosome fiber: evidence for an ordered superstructure of nucleosomes. Chromosoma. 1977 Jul 18;62(4):301–317. doi: 10.1007/BF00327030. [DOI] [PubMed] [Google Scholar]
  12. Isenberg I. Histones. Annu Rev Biochem. 1979;48:159–191. doi: 10.1146/annurev.bi.48.070179.001111. [DOI] [PubMed] [Google Scholar]
  13. Itkes A. V., Glotov B. O., Nikolaev L. G., Preem S. R., Severin E. S. Repeating oligonucleosomal units. A new element of chromatin structure. Nucleic Acids Res. 1980 Feb 11;8(3):507–527. doi: 10.1093/nar/8.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jorcano J. L., Meyer G., Day L. A., Renz M. Aggregation of small oligonucleosomal chains into 300-A globular particles. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6443–6447. doi: 10.1073/pnas.77.11.6443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jump D. B., Butt T. R., Smulson M. Reconstitution of HeLa cell poly(adenosine diphosphate ribose) polymerase with purified oligonucleosomal chromatin. Biochemistry. 1980 Mar 4;19(5):1031–1037. doi: 10.1021/bi00546a031. [DOI] [PubMed] [Google Scholar]
  16. Kornberg R. D. Structure of chromatin. Annu Rev Biochem. 1977;46:931–954. doi: 10.1146/annurev.bi.46.070177.004435. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Li H. J., Hu A. W., Maciewicz R. A., Cohen P., Santella R. M., Chang C. Structural transition in chromatin induced by ions in solution. Nucleic Acids Res. 1977 Nov;4(11):3839–3854. doi: 10.1093/nar/4.11.3839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McGhee J. D., Felsenfeld G. Nucleosome structure. Annu Rev Biochem. 1980;49:1115–1156. doi: 10.1146/annurev.bi.49.070180.005343. [DOI] [PubMed] [Google Scholar]
  21. Muyldermans S., Lasters I., Wyns L., Hamers R. Upon the observation of superbeads in chromatin. Nucleic Acids Res. 1980 May 24;8(10):2165–2172. doi: 10.1093/nar/8.10.2165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pruitt S. C., Grainger R. M. A repeating unit of higher order chromatin structure in chick red blood cell nuclei. Chromosoma. 1980;78(3):257–274. doi: 10.1007/BF00327387. [DOI] [PubMed] [Google Scholar]
  23. Rattner J. B., Hamkalo B. A. Higher order structure in metaphase chromosomes. I. The 250 A fiber. Chromosoma. 1978 Dec 6;69(3):363–372. doi: 10.1007/BF00332139. [DOI] [PubMed] [Google Scholar]
  24. Rattner J. B., Hamkalo B. A. Higher order structure in metaphase chromosomes. II. The relationship between the 250 A fiber, superbeads and beads-on-a-string. Chromosoma. 1978 Dec 6;69(3):373–379. doi: 10.1007/BF00332140. [DOI] [PubMed] [Google Scholar]
  25. Renz M. Heterogeneity of the chromosome fiber. Nucleic Acids Res. 1979 Jun 25;6(8):2761–2767. doi: 10.1093/nar/6.8.2761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Renz M., Nehls P., Hozier J. Involvement of histone H1 in the organization of the chromosome fiber. Proc Natl Acad Sci U S A. 1977 May;74(5):1879–1883. doi: 10.1073/pnas.74.5.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ruiz-Carrillo A., Puigdomènech P., Eder G., Lurz R. Stability and reversibility of higher ordered structure of interphase chromatin: continuity of deoxyribonucleic acid is not required for maintenance of folded structure. Biochemistry. 1980 Jun 10;19(12):2544–2554. doi: 10.1021/bi00553a002. [DOI] [PubMed] [Google Scholar]
  28. Strätling W. H., Müller U., Zentgraf H. The higher order repeat structure of chromatin is built up of globular particles containing eight nucleosomes. Exp Cell Res. 1978 Dec;117(2):301–311. doi: 10.1016/0014-4827(78)90144-1. [DOI] [PubMed] [Google Scholar]
  29. Thoma F., Koller T., Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol. 1979 Nov;83(2 Pt 1):403–427. doi: 10.1083/jcb.83.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Walker B. W., Lothstein L., Baker C. L., LeStourgeon W. M. The release of 40S hnRNP particles by brief digestion of HeLa nuclei with micrococcal nuclease. Nucleic Acids Res. 1980 Aug 25;8(16):3639–3657. doi: 10.1093/nar/8.16.3639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weintraub H. The nucleosome repeat length increases during erythropoiesis in the chick. Nucleic Acids Res. 1978 Apr;5(4):1179–1188. doi: 10.1093/nar/5.4.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES