Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Oct;78(10):6048–6050. doi: 10.1073/pnas.78.10.6048

Fluorometric assay for adenosine 3',5'-cyclic monophosphate-dependent protein kinase and phosphoprotein phosphatase activities.

D E Wright, E S Noiman, P B Chock, V Chau
PMCID: PMC348974  PMID: 6273844

Abstract

A novel peptide substrate for adenosine 3',5'-cyclic monophosphate-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37), Leu-Arg-Arg-Trp-Ser-Leu-Gly, was synthesized. Phosphorylation of the peptide causes a 20% increase in the peptide fluorescence intensity at 358 nm. Values of Km and kcat for the phosphorylation reaction at pH 7.0 (25 degrees C), were determined to be 2.7 +/- 0.5 microM and 5.5 +/- 0.4 sec-1, respectively. The phosphorylated peptide was shown to be an effective substrate for phosphoprotein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) with a Km of 113 +/- 10 microM and a kcat of 2.4 +/- 0.2 sec-1 in the presence of 2.5 mM MnCl2. Changes in the peptide fluorescence intensity as a function of its phosphorylation state provide a highly sensitive assay of cyclic AMP-dependent protein kinase and phosphoprotein phosphatase activities.

Full text

PDF
6048

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Chou C. K., Alfano J., Rosen O. M. Purification of phosphoprotein phosphatase from bovine cardiac muscle that catalyzes dephosphorylation of cyclic AMP-binding protein component of protein kinase. J Biol Chem. 1977 May 10;252(9):2855–2859. [PubMed] [Google Scholar]
  3. Daile P., Carnegie P. R. Peptides from myelin basic protein as substrates for adenosine 3', 5'-cyclic monophosphate-dependent protein kinases. Biochem Biophys Res Commun. 1974 Dec 11;61(3):852–858. doi: 10.1016/0006-291x(74)90234-4. [DOI] [PubMed] [Google Scholar]
  4. Glass D. B., Masaracchia R. A., Feramisco J. R., Kemp B. E. Isolation of phosphorylated peptides and proteins on ion exchange papers. Anal Biochem. 1978 Jul 1;87(2):566–575. doi: 10.1016/0003-2697(78)90707-8. [DOI] [PubMed] [Google Scholar]
  5. Gracy R. W. Two-dimensional thin-layer methods. Methods Enzymol. 1977;47:195–204. doi: 10.1016/0076-6879(77)47024-1. [DOI] [PubMed] [Google Scholar]
  6. Kemp B. E., Benjamini E., Krebs E. G. Synthetic hexapeptide substrates and inhibitors of 3':5'-cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1038–1042. doi: 10.1073/pnas.73.4.1038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kemp B. E., Graves D. J., Benjamini E., Krebs E. G. Role of multiple basic residues in determining the substrate specificity of cyclic AMP-dependent protein kinase. J Biol Chem. 1977 Jul 25;252(14):4888–4894. [PubMed] [Google Scholar]
  8. Kemp B. E. Phosphorylation of acyl and dansyl derivatives of the peptide Leu-Arg-Arg-Ala-Ser-Leu-Gly by the cAMP-dependent protein kinase. J Biol Chem. 1980 Apr 10;255(7):2914–2918. [PubMed] [Google Scholar]
  9. Krebs E. G., Beavo J. A. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem. 1979;48:923–959. doi: 10.1146/annurev.bi.48.070179.004423. [DOI] [PubMed] [Google Scholar]
  10. MERRIFIELD R. B. SOLID-PHASE PEPTIDE SYNTHESIS. 3. AN IMPROVED SYNTHESIS OF BRADYKININ. Biochemistry. 1964 Sep;3:1385–1390. doi: 10.1021/bi00897a032. [DOI] [PubMed] [Google Scholar]
  11. Matsuo M., Huang C. H., Huang L. C. Evidence for an essential arginine recognition site on adenosine 3':5'-cyclic monophosphate-dependent protein kinase of rabbit skeletal muscle. Biochem J. 1978 Aug 1;173(2):441–447. doi: 10.1042/bj1730441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Noiman E. S. Phosphorylation of smooth muscle myosin light chains by cAMP-dependent protein kinase. J Biol Chem. 1980 Dec 10;255(23):11067–11070. [PubMed] [Google Scholar]
  13. Rubin C. S., Erlichman J., Rosen O. M. Molecular forms and subunit composition of a cyclic adenosine 3',5'-monophosphate-dependent protein kinase purified from bovine heart muscle. J Biol Chem. 1972 Jan 10;247(1):36–44. [PubMed] [Google Scholar]
  14. Small D., Chou P. Y., Fasman G. D. Occurrence of phosphorylated residues in predicted beta-turns: implications for beta-turn participation in control mechanisms. Biochem Biophys Res Commun. 1977 Nov 7;79(1):341–346. doi: 10.1016/0006-291x(77)90101-2. [DOI] [PubMed] [Google Scholar]
  15. Titanji V. P. Purification and properties of a phosphoprotein phosphatase from rat liver. Biochim Biophys Acta. 1977 Mar 15;481(1):140–151. doi: 10.1016/0005-2744(77)90145-0. [DOI] [PubMed] [Google Scholar]
  16. Zetterqvist O., Ragnarsson U., Humble E., Berglund L., Engström L. The minimum substrate of cyclic AMP-stimulated protein kinase, as studied by synthetic peptides representing the phosphorylatable site of pyruvate kinase (type L) of rat liver. Biochem Biophys Res Commun. 1976 Jun 7;70(3):696–703. doi: 10.1016/0006-291x(76)90648-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES