Abstract
Covalent adducts formed by the reaction of DNA with chemical carcinogens and mutagens may be detected by a 32P-labeling test. DNA preparations exposed to chemicals known to bind covalently to DNA [N-methyl-N-nitrosourea, dimethyl sulfate, formaldehyde, beta-propiolactone, propylene oxide, streptozotocin, nitrogen mustard, and 1,3-bis(2-chloroethyl)-1-nitrosourea] were digested to a mixture of deoxynucleoside 3'-monophosphates by incubation with micrococcal endonuclease (EC 3.1.31.1) and spleen exonuclease (EC 3.1.16.1). The digests were treated with [gamma-32P]ATP and T4 polynucleotide kinase (ATP:5'-dephosphopolynucleotide 5'-phosphotransferase, EC 2.7.1.78) to convert the monophosphates to 5'-32P-labeled deoxynucleoside 3',5'-bis-phosphates. These compounds were then separated on polyethyleneimine-cellulose thin layers in ammonium formate and ammonium sulfate solutions. Autoradiograms of the chromatograms obtained by this high-resolution procedure showed the presence of nucleotides derived from chemically altered, as well as normal, DNA constituents. Maps from DNA exposed to any of the chemicals used exhibited a spot pattern typical for the particular chemical. This method detected a single adduct in 10(5) DNA nucleotides without requiring that the compound under investigation be radioactive and thus provides a useful test to screen chemicals for their capacity to damage DNA by covalent binding.
Full text
PDF![6126](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/348990/2c0829b0739e/pnas00661-0230.png)
![6127](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/348990/808321d86720/pnas00661-0231.png)
![6128](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/348990/10732bcc7875/pnas00661-0232.png)
![6129](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3f1/348990/307fbfa9195b/pnas00661-0233.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N. Identifying environmental chemicals causing mutations and cancer. Science. 1979 May 11;204(4393):587–593. doi: 10.1126/science.373122. [DOI] [PubMed] [Google Scholar]
- Ames B. N., Mccann J., Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res. 1975 Dec;31(6):347–364. doi: 10.1016/0165-1161(75)90046-1. [DOI] [PubMed] [Google Scholar]
- Auerbach C., Moutschen-Dahmen M., Moutschen J. Genetic and cytogenetical effects of formaldehyde and related compounds. Mutat Res. 1977;39(3-4):317–361. doi: 10.1016/0165-1110(77)90011-2. [DOI] [PubMed] [Google Scholar]
- FRAENKEL-CONRAT H. Reaction of nucleic acid with formaldehyde. Biochim Biophys Acta. 1954 Oct;15(2):307–309. doi: 10.1016/0006-3002(54)90083-9. [DOI] [PubMed] [Google Scholar]
- Feldman M. Y. Reactions of nucleic acids and nucleoproteins with formaldehyde. Prog Nucleic Acid Res Mol Biol. 1973;13:1–49. doi: 10.1016/s0079-6603(08)60099-9. [DOI] [PubMed] [Google Scholar]
- Hollstein M., McCann J., Angelosanto F. A., Nichols W. W. Short-term tests for carcinogens and mutagens. Mutat Res. 1979 Sep;65(3):133–226. doi: 10.1016/0165-1110(79)90014-9. [DOI] [PubMed] [Google Scholar]
- Lawley P. D., Jarman M. Alkylation by propylene oxide of deoxyribonucleic acid, adenine, guanosine and deoxyguanylic acid. Biochem J. 1972 Feb;126(4):893–900. doi: 10.1042/bj1260893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewin S. Reaction of salmon sperm deoxyribonucleic acid with formaldehyde. Arch Biochem Biophys. 1966 Mar;113(3):584–602. doi: 10.1016/0003-9861(66)90236-0. [DOI] [PubMed] [Google Scholar]
- McCann J., Ames B. N. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. Proc Natl Acad Sci U S A. 1976 Mar;73(3):950–954. doi: 10.1073/pnas.73.3.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCann J., Choi E., Yamasaki E., Ames B. N. Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5135–5139. doi: 10.1073/pnas.72.12.5135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller E. C. Some current perspectives on chemical carcinogenesis in humans and experimental animals: Presidential Address. Cancer Res. 1978 Jun;38(6):1479–1496. [PubMed] [Google Scholar]
- Miller J. A. Carcinogenesis by chemicals: an overview--G. H. A. Clowes memorial lecture. Cancer Res. 1970 Mar;30(3):559–576. [PubMed] [Google Scholar]
- Pegg A. E. Formation and metabolism of alkylated nucleosides: possible role in carcinogenesis by nitroso compounds and alkylating agents. Adv Cancer Res. 1977;25:195–269. doi: 10.1016/s0065-230x(08)60635-1. [DOI] [PubMed] [Google Scholar]
- Randerath E., Yu C. T., Randerath K. Base analysis of ribopolynucleotides by chemical tritium labeling: a methodological study with model nucleosides and purified tRNA species. Anal Biochem. 1972 Jul;48(1):172–198. doi: 10.1016/0003-2697(72)90181-9. [DOI] [PubMed] [Google Scholar]
- Randerath K., Gupta R. C., Randerath E. 3H and 32P derivative methods for base composition and sequence analysis of RNA. Methods Enzymol. 1980;65(1):638–680. doi: 10.1016/s0076-6879(80)65065-4. [DOI] [PubMed] [Google Scholar]
- Richardson C. C. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage-infected Escherichia coli. Proc Natl Acad Sci U S A. 1965 Jul;54(1):158–165. doi: 10.1073/pnas.54.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rinkus S. J., Legator M. S. Chemical characterization of 465 known or suspected carcinogens and their correlation with mutagenic activity in the Salmonella typhimurium system. Cancer Res. 1979 Sep;39(9):3289–3318. [PubMed] [Google Scholar]
- Silberklang M., Gillum A. M., RajBhandary U. L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. doi: 10.1016/0076-6879(79)59072-7. [DOI] [PubMed] [Google Scholar]
- Singer B. N-nitroso alkylating agents: formation and persistence of alkyl derivatives in mammalian nucleic acids as contributing factors in carcinogenesis. J Natl Cancer Inst. 1979 Jun;62(6):1329–1339. [PubMed] [Google Scholar]
- Swann P. F., Magee P. N. Nitrosamine-induced carcinogenesis. The alklylation of nucleic acids of the rat by N-methyl-N-nitrosourea, dimethylnitrosamine, dimethyl sulphate and methyl methanesulphonate. Biochem J. 1968 Nov;110(1):39–47. doi: 10.1042/bj1100039. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanstrom R., Shank P. R. X-Ray Intensifying Screens Greatly Enhance the Detection by Autoradiography of the Radioactive Isotopes 32P and 125I. Anal Biochem. 1978 May;86(1):184–192. doi: 10.1016/0003-2697(78)90333-0. [DOI] [PubMed] [Google Scholar]
- WHEELER G. P., SKIPPER H. E. Studies with mustards. III. In vivo fixation of C14 from nitrogen mustard-C14H3 in nucleic acid fractions of animal tissues. Arch Biochem Biophys. 1957 Dec;72(2):465–475. doi: 10.1016/0003-9861(57)90222-9. [DOI] [PubMed] [Google Scholar]