Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Oct;78(10):6481–6484. doi: 10.1073/pnas.78.10.6481

Increased ascorbic acid content in chronic lymphocytic leukemia B lymphocytes.

L Liebes, R Krigel, S Kuo, D Nevrla, E Pelle, R Silber
PMCID: PMC349063  PMID: 6975941

Abstract

Human lymphocyte extracts analyzed by high-performance liquid chromatography reveal a major UV-absorbing peak that was shown to be ascorbic acid by spectral, chemical, and enzymatic criteria. Because this peak appeared very prominent in the elution profile of chronic lymphocytic leukemia (CLL) lymphocyte extracts, we measured the ascorbic acid content in lymphocytes from the blood of normal subjects and untreated patients with chronic lymphocytic leukemia. A significantly higher concentration of 111 +/- 15.3 nmol per 10(8) cells (mean +/- SEM) was found in CLL lymphocytes than in normal blood lymphocytes, which contained 42.2 +/- 3.3 nmol per 10(8) cells. Selective enrichment with B and T cells showed that this difference was limited to the chronic lymphocytic leukemia B cell, which had a 5- to 15-fold higher content of ascorbic acid than normal B cells had. In contrast, the ascorbic acid level was similar in normal and CLL T cells. The very high ascorbic acid content provides the chronic lymphocytic leukemia B cell with a reducing substance that could react with oxidants or free radicals.

Full text

PDF
6481

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. I., Spector A. Oxidation-reduction reactions involving ascorbic acid and the hexosemonophosphate shunt in corneal epithelium. Invest Ophthalmol. 1971 Jan;10(1):41–53. [PubMed] [Google Scholar]
  2. Andrews J., Letcher M., Brook M. Vitamin C supplementation in the elderly: a 17-month trial in an old persons' home. Br Med J. 1969 May 17;2(5654):416–418. doi: 10.1136/bmj.2.5654.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barton G. M., Roath O. S. Leucocyte ascorbic acid in abnormal leucocyte states. Int J Vitam Nutr Res. 1976;46(3):271–274. [PubMed] [Google Scholar]
  4. Bigley R., Riddle M., Layman D., Stankova L. Human cell dehydroascorbate reductase. Kinetic and functional properties. Biochim Biophys Acta. 1981 May 14;659(1):15–22. doi: 10.1016/0005-2744(81)90266-7. [DOI] [PubMed] [Google Scholar]
  5. Borchardt R. T., Hegazi M. F., Schowen R. L. Determination of O-methylated metabolites of cathecholamines using high-performance liquid chromatography and electrochemical detection. J Chromatogr. 1978 May 11;152(1):253–259. doi: 10.1016/s0021-9673(00)85363-7. [DOI] [PubMed] [Google Scholar]
  6. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  7. Chatterjee I. B., Majumder A. K., Nandi B. K., Subramanian N. Synthesis and some major functions of vitamin C in animals. Ann N Y Acad Sci. 1975 Sep 30;258:24–47. doi: 10.1111/j.1749-6632.1975.tb29266.x. [DOI] [PubMed] [Google Scholar]
  8. DAGLISH C. The spectrophotometic determination of ascorbic acid in tissue extracts, particularly those of the walnut (Juglans regia). Biochem J. 1951 Oct;49(5):635–639. doi: 10.1042/bj0490635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deana R., Bharaj B. S., Verjee Z. H., Galzigna L. Changes relevant to catecholamine metabolism in liver and brain of ascorbic acid deficient guinea-pigs. Int J Vitam Nutr Res. 1975;45(2):175–182. [PubMed] [Google Scholar]
  10. Dodd N. J., Giron-Conland J. M. Electron spin resonance study of changes during the development of a mouse myeloid leukaemia. II. The ascorbyl radical. Br J Cancer. 1975 Oct;32(4):451–455. doi: 10.1038/bjc.1975.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Donofrio J., Coleman M. S., Hutton J. J., Daoud A., Lampkin B., Dyminski J. Overproduction of adenine deoxynucleosides and deoxynucletides in adenosine deaminase deficiency with severe combined immunodeficiency disease. J Clin Invest. 1978 Oct;62(4):884–887. doi: 10.1172/JCI109201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fialkow P. J., Najfeld V., Reddy A. L., Singer J., Steinmann L. Chronic lymphocytic leukaemia: Clonal origin in a committed B-lymphocyte progenitor. Lancet. 1978 Aug 26;2(8087):444–446. doi: 10.1016/s0140-6736(78)91444-7. [DOI] [PubMed] [Google Scholar]
  13. Halliwell B., Foyer C. H. Ascorbic acid, metal ions and the superoxide radical. Biochem J. 1976 Jun 1;155(3):697–700. doi: 10.1042/bj1550697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hulse J. D., Ellis S. R., Henderson L. M. Carnitine biosynthesis. beta-Hydroxylation of trimethyllysine by an alpha-ketoglutarate-dependent mitochondrial dioxygenase. J Biol Chem. 1978 Mar 10;253(5):1654–1659. [PubMed] [Google Scholar]
  15. Kakar S. C., Wilson C. W., Bell J. N. Plasma and leucocyte ascorbic acid concentrations in acute lymphoblastic leukaemia. Ir J Med Sci. 1975 Jun;144(6):227–232. [PubMed] [Google Scholar]
  16. Lopes J., Zucker-Franklin D., Silber R. Heterogeneity of 5'-nucleotidase activity in lymphocytes in chronic lymphocytic leukemia. J Clin Invest. 1973 May;52(5):1297–1300. doi: 10.1172/JCI107298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mage M. G., McHugh L. L., Rothstein T. L. Mouse lymphocytes with and without surface immunoglobulin: preparative scale separation in polystyrene tissue culture dishes coated with specifically purified anti-immunoglobulin. J Immunol Methods. 1977;15(1):47–56. doi: 10.1016/0022-1759(77)90016-3. [DOI] [PubMed] [Google Scholar]
  18. Moriarty M. J., Mulgrew S., Malone J. R., O'Connor M. K. Results and analysis of tumour levels of ascorbic acid. Ir J Med Sci. 1977 Mar;146(3):74–78. doi: 10.1007/BF03030933. [DOI] [PubMed] [Google Scholar]
  19. Myllylä R., Kuutti-Savolainen E. R., Kivirikko K. I. The role of ascorbate in the prolyl hydroxylase reaction. Biochem Biophys Res Commun. 1978 Jul 28;83(2):441–448. doi: 10.1016/0006-291x(78)91010-0. [DOI] [PubMed] [Google Scholar]
  20. Orr C. W. Studies on ascorbic acid. I. Factors influencing the ascorbate-mediated inhibition of catalase. Biochemistry. 1967 Oct;6(10):2995–3000. doi: 10.1021/bi00862a004. [DOI] [PubMed] [Google Scholar]
  21. Orr C. W. Studies on ascorbic acid. II. Physical changes in catalase following incubation with ascorbate or ascorbate and copper (II). Biochemistry. 1967 Oct;6(10):3000–3006. doi: 10.1021/bi00862a005. [DOI] [PubMed] [Google Scholar]
  22. Pertoft H., Johnsson A., Wärmegård B., Seljelid R. Separation of human monocytes on density gradients of Percoll. J Immunol Methods. 1980;33(3):221–229. doi: 10.1016/0022-1759(80)90209-4. [DOI] [PubMed] [Google Scholar]
  23. Petty H. R., Ware B. R., Liebes L. F., Pelle E., Silber R. Electrophoretic mobility distributions distinguish hairy cells from other mononuclear blood cells and provide evidence for the heterogeneity of normal monocytes. Blood. 1981 Feb;57(2):250–255. [PubMed] [Google Scholar]
  24. Scher N. S., Quagliata F., Malathi V. G., Faig D., Melton R. A., Silber R. Cyclic adenosine 3':5'-monophosphate phosphodiesterase activity in normal and chronic lymphocytic leukemia lymphocytes. Cancer Res. 1976 Nov;36(11 Pt 1):3958–3962. [PubMed] [Google Scholar]
  25. Stankova L., Gerhardt N. B., Nagel L., Bigley R. H. Ascorbate and phagocyte function. Infect Immun. 1975 Aug;12(2):252–256. doi: 10.1128/iai.12.2.252-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weiner M. S., Bianco C., Nussenzweig V. Enhanced binding of neuraminidase-treated sheep erythrocytes to human T lymphocytes. Blood. 1973 Dec;42(6):939–946. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES