Abstract
Previous studies performed in our laboratory have shown that a minor single-stranded DNA component (ssDNA) isolated from the bulk of double-stranded nuclear DNA (nDNA) of human, murine, or avian cells consisted mainly of active transcription sites. In the present work, ssDNA isolated from human lymphoid cells, either malignant or not, amounted to 1.2-1.4% of the total nDNA. This was labeled with 125I and utilized as a probe in RNA-driven iterative hybridization and cross-hybridization assays. In all cases of neoplasia studied, the same subfraction of ssDNA (equivalent to 10-12% of the total ssDNA) from malignant cells could be hybridized with cytoplasmic RNA from malignant cells, whatever their origin: acute lymphoid leukemia cells collected from blood of leukemic patients, local lymphosarcomas, or cells from two established strains grown in suspension, one Epstein-Barr virus positive (Raji strain), the other Epstein--Barr virus negative (Ramos strain). The majority of these tumor-specific DNA sequences could be reassociated with unique-copy DNA from both normal and malignant cells and were not expressed in normal lymphoid cells, including those of an established strain immortalized by Epstein--Barr virus and multiplied in culture. It is concluded that a great number of new transcription units, in the range of 2500-3000 per cell genome, were activated after spontaneous malignant transformation of lymphoid cells.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bellard M., Gannon F., Chambon P. Nucleosome structure III: the structure and transcriptional activity of the chromatin containing the ovalbumin and globin genes in chick oviduct nuclei. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 2):779–791. doi: 10.1101/sqb.1978.042.01.078. [DOI] [PubMed] [Google Scholar]
- Bloom K. S., Anderson J. N. Fractionation of hen oviduct chromatin into transcriptionally active and inactive regions after selective micrococcal nuclease digestion. Cell. 1978 Sep;15(1):141–150. doi: 10.1016/0092-8674(78)90090-9. [DOI] [PubMed] [Google Scholar]
- Champoux J. J. Strand breakage by the DNA untwisting enzyme results in covalent attachment of the enzyme to DNA. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3800–3804. doi: 10.1073/pnas.74.9.3800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein M. A., Achong B. G., Barr Y. M., Zajac B., Henle G., Henle W. Morphological and virological investigations on cultured Burkitt tumor lymphoblasts (strain Raji). J Natl Cancer Inst. 1966 Oct;37(4):547–559. [PubMed] [Google Scholar]
- Garel A., Axel R. Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3966–3970. doi: 10.1073/pnas.73.11.3966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Getz M. J., Reiman H. M., Jr, Siegal G. P., Quinlan T. J., Proper J., Elder P. K., Moses H. L. Gene expression in chemically transformed mouse embryo cells: selective enhancement of the expression of C type RNA tumor virus genes. Cell. 1977 Aug;11(4):909–921. doi: 10.1016/0092-8674(77)90302-6. [DOI] [PubMed] [Google Scholar]
- Gianni A. M., Dalla Favera R., Polli E., Merisio I., Giglioni B., Comi P., Ottolenghi S. Globin RNA sequences in human leukaemic peripheral blood. Nature. 1978 Aug 10;274(5671):610–612. doi: 10.1038/274610a0. [DOI] [PubMed] [Google Scholar]
- Grady L. J., Campbell W. P. Non-repetitive DNA transcription in mouse cells grown in tissue culture. Nat New Biol. 1973 Jun 13;243(128):195–198. doi: 10.1038/newbio243195a0. [DOI] [PubMed] [Google Scholar]
- Groudine M., Weintraub H. Activation of cellular genes by avian RNA tumor viruses. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5351–5354. doi: 10.1073/pnas.77.9.5351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanania N., Schaool D., Poncy C., Tapiero H., Harel J. Isolation of single stranded transcription sites from human nuclear DNA. Cell Biol Int Rep. 1977 Jul;1(4):309–315. doi: 10.1016/0309-1651(77)90060-1. [DOI] [PubMed] [Google Scholar]
- Hanania N., Shaool D., Poncy C., Harel J. New gene expression in dimethylsulfoxide-treated Friend erythroleukemia cells. Exp Cell Res. 1980 Nov;130(1):119–126. doi: 10.1016/0014-4827(80)90048-8. [DOI] [PubMed] [Google Scholar]
- Klein G., Giovanella B., Westman A., Stehlin J. S., Mumford D. An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology. 1975;5(6):319–334. doi: 10.1159/000149930. [DOI] [PubMed] [Google Scholar]
- Leibovitch S. A., Harel J. Active DNA transcription sites released from the genome of normal embryonic chicken cells. Nucleic Acids Res. 1978 Mar;5(3):777–787. doi: 10.1093/nar/5.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leibovitch S. A., Leibovitch M. P., Kruh J., Harel J. Relationship between single-stranded DNA isolated from cultured muscular cells during differentiation and the transcription of messenger RNA. Eur J Biochem. 1979 Jul;97(2):327–333. doi: 10.1111/j.1432-1033.1979.tb13118.x. [DOI] [PubMed] [Google Scholar]
- Leibovitch S. A., Tapiero H., Harel J. Single-stranded DNA from oncornavirus-infected cells enriched in virus-specific DNA sequences. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3720–3724. doi: 10.1073/pnas.74.9.3720. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leibovitch S. A., Tichonicky L., Kruh J., Harel J. Single-strandedness of the majority of DNA sequences complementary to mRNA-coding sites isolated from rat hepatoma tissue cultured cells. Exp Cell Res. 1981 May;133(1):181–189. doi: 10.1016/0014-4827(81)90368-2. [DOI] [PubMed] [Google Scholar]
- Patel G. L., Thompson P. E. Immunoreactive helix-destabilizing protein localized in transcriptionally active regions of Drosophila polytene chromosomes. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6749–6753. doi: 10.1073/pnas.77.11.6749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riley D. E. Deoxyribonuclease I generates single-stranded gaps in chromatin deoxyribonucleic acid. Biochemistry. 1980 Jun 24;19(13):2977–2992. doi: 10.1021/bi00554a024. [DOI] [PubMed] [Google Scholar]
- Robbins P. W., Wickus G. G., Branton P. E., Gaffney B. J., Hirschberg C. B., Fuchs P., Blumberg P. The chick fibroblast cell surface after transformation by Rous sarcoma virus. Cold Spring Harb Symp Quant Biol. 1975;39(Pt 2):1173–1180. doi: 10.1101/sqb.1974.039.01.135. [DOI] [PubMed] [Google Scholar]
- Rolton H. A., Birnie G. D., Paul J. The diversity and specificity of nuclear and polysomal poly(A)+ RNA populations in normal and MSV-transformed cells. Cell Differ. 1977 Jun;6(1):25–39. doi: 10.1016/0045-6039(77)90042-2. [DOI] [PubMed] [Google Scholar]
- Senior M. B., Frankel F. R. Evidence for two kinds of chromatin binding sites for the estradiol-receptor complex. Cell. 1978 Aug;14(4):857–863. doi: 10.1016/0092-8674(78)90341-0. [DOI] [PubMed] [Google Scholar]
- Shaool D., Hanania N., Harel J., May E. Relationship between single-stranded DNA isolated from mouse cells transformed by simian virus 40 and transcription of cellular and virus genes. J Gen Virol. 1979 Jun;43(3):571–581. doi: 10.1099/0022-1317-43-3-571. [DOI] [PubMed] [Google Scholar]
- Strand M., August J. T. Polypeptide maps of cells infected with murine type C leukemia or sarcoma oncovirus. Cell. 1978 Feb;13(2):399–408. doi: 10.1016/0092-8674(78)90208-8. [DOI] [PubMed] [Google Scholar]
- Tapiero H., Monier M. N., Shaool D., Harel J. Distribution of repetitious sequences in chick nuclear DNA. Nucleic Acids Res. 1974 Feb;1(2):309–322. doi: 10.1093/nar/1.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weintraub H., Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 1976 Sep 3;193(4256):848–856. doi: 10.1126/science.948749. [DOI] [PubMed] [Google Scholar]
- Williams J. G., Hoffman R., Penman S. The extensive homology between mRNA sequences of normal and SV40-transformed human fibroblasts. Cell. 1977 Aug;11(4):901–907. doi: 10.1016/0092-8674(77)90301-4. [DOI] [PubMed] [Google Scholar]
