Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Oct;78(10):6517–6521. doi: 10.1073/pnas.78.10.6517

Primary structure of corticotropin-releasing factor from ovine hypothalamus.

J Spiess, J Rivier, C Rivier, W Vale
PMCID: PMC349071  PMID: 6273874

Abstract

Sequence analysis was performed of an ovine hypothalamic 41-residue polypeptide that had been postulated to be a putative corticotropin-releasing factor (CRF) because of its high intrinsic corticotropin releasing activity. The NH2-terminal 39 residues of CRF were determined by Edman degradation of 0.6-3.5 nmol of peptide in a Wittmann-Liebold modified Beckman 890C spinning cup sequencer with reverse-phase high-pressure liquid chromatography for the identification of amino acid phenylthiohydantoins (direct micro-sequence analysis). Evidence for residue 40 (isoleucine) was provided by direct micro-sequence analysis of 2.0 nmol of acetylated CRF selectively cleaved at its arginine residues by trypsin prior to analysis. The thermolytic COOH-terminal fragment isoleucyl-alanineamide was characterized as its dansyl derivative. Based on the analytical data, the following primary structure is proposed for ovine hypothalamic CRF: H-Ser-Gln-Glu-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-Phe-His-Leu-Leu-Arg-Glu-Val-Leu-Glu-Met-Thr-Lys-Ala-Asp-Gln-Leu-Ala-Gln-Gln-Ala-His-Ser-Asn-Arg-Lys-Leu-Leu-Asp -Ile-Ala-NH2. In agreement with this proposal, the synthetic replicate of CRF is highly potent in stimulating secretion of both corticotropin and beta-endorphin-like immunoactivities.

Full text

PDF
6517

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braunitzer G., Schrank B., Ruhfus A. Zum vollständigen und autoatischen Abbau von Peptiden nach der Quadrolmethode. Hoppe Seylers Z Physiol Chem. 1970 Dec;351(12):1589–1590. [PubMed] [Google Scholar]
  2. Burgus R., Amoss M., Brazeau P., Brown M., Ling N., Rivier C., Rivier J., Vale W., Villarreal J. Isolation and characterization of hypothalamic peptide hormones. Curr Top Mol Endocrinol. 1976;3:355–372. doi: 10.1007/978-1-4684-2598-7_19. [DOI] [PubMed] [Google Scholar]
  3. Cappugi G., Nassi P., Treves C., Ramponi G. Use of amino acid-analyzer for identification of 3H labelled C-terminal amino acid. Experientia. 1971 Feb 15;27(2):237–239. doi: 10.1007/BF02145918. [DOI] [PubMed] [Google Scholar]
  4. Dwulet F. E., Gurd F. R. A comparison of sulfonated phenylisothiocyanates for reducing losses of lysine-containg peptides during automated sequencing. Anal Biochem. 1976 Dec;76(2):530–538. doi: 10.1016/0003-2697(76)90345-6. [DOI] [PubMed] [Google Scholar]
  5. GUILLEMIN R., ROSENBERG B. Humoral hypothalamic control of anterior pituitary: a study with combined tissue cultures. Endocrinology. 1955 Nov;57(5):599–607. doi: 10.1210/endo-57-5-599. [DOI] [PubMed] [Google Scholar]
  6. Hayashi R., Bai Y., Hata T. Kinetic studies of carboxypeptidase Y. I. Kinetic parameters for the hydrolysis of synthetic substrates. J Biochem. 1975 Jan 1;77(1?):69–79. [PubMed] [Google Scholar]
  7. Hayashi R. Carboxypeptidase Y in sequence determination of peptides. Methods Enzymol. 1977;47:84–93. doi: 10.1016/0076-6879(77)47010-1. [DOI] [PubMed] [Google Scholar]
  8. Hunkapiller M. W., Hood L. E. Direct microsequence analysis of polypeptides using an improved sequenator, a nonprotein carrier (polybrene), and high pressure liquid chromatography. Biochemistry. 1978 May 30;17(11):2124–2133. doi: 10.1021/bi00604a016. [DOI] [PubMed] [Google Scholar]
  9. SAFFRAN M., SCHALLY A. V. The release of corticotrophin by anterior pituitary tissue in vitro. Can J Biochem Physiol. 1955 May;33(3):408–415. [PubMed] [Google Scholar]
  10. SKEGGS L. T., Jr, KAHN J. R., LENTZ K., SHUMWAY N. P. The preparation, purification, and amino acid sequence of a polypeptide renin substrate. J Exp Med. 1957 Sep 1;106(3):439–453. doi: 10.1084/jem.106.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Savige W. E., Fontana A. Interconversion of methionine and methionine sulfoxide. Methods Enzymol. 1977;47:453–459. doi: 10.1016/0076-6879(77)47045-9. [DOI] [PubMed] [Google Scholar]
  12. Spiess J., Rivier J. E., Rodkey J. A., Bennett C. D., Vale W. Isolation and characterization of somatostatin from pigeon pancreas. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2974–2978. doi: 10.1073/pnas.76.6.2974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Spiess J., Villarreal J., Vale W. Isolation and sequence analysis of a somatostatin-like polypeptide from ovine hypothalamus. Biochemistry. 1981 Mar 31;20(7):1982–1988. doi: 10.1021/bi00510a038. [DOI] [PubMed] [Google Scholar]
  14. Vale W., Brazeau P., Rivier C., Brown M., Boss B., Rivier J., Burgus R., Ling N., Guillemin R. Somatostatin. Recent Prog Horm Res. 1975;31:365–397. doi: 10.1016/b978-0-12-571131-9.50014-1. [DOI] [PubMed] [Google Scholar]
  15. Vale W., Grant G., Amoss M., Blackwell R., Guillemin R. Culture of enzymatically dispersed pituitary cells: functional validation of a method. Endocrinology. 1972 Aug;91(2):562–572. doi: 10.1210/endo-91-2-562. [DOI] [PubMed] [Google Scholar]
  16. Wittmann-Liebold B. Amino acid sequence studies on ten ribosomal proteins of Escherichia coli with an improved sequenator equipped with an automatic conversion device. Hoppe Seylers Z Physiol Chem. 1973 Oct-Nov;354(10-11):1415–1431. doi: 10.1515/bchm2.1973.354.2.1415. [DOI] [PubMed] [Google Scholar]
  17. Wittmann-Liebold B., Graffunder H., Kohls H. A device coupled to a modified sequenator for the automated conversion of anilinothiazolinones into PTH amino acids. Anal Biochem. 1976 Oct;75(2):621–633. doi: 10.1016/0003-2697(76)90117-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES