Abstract
Rabbit liver metallothionein-1 in which all seven metal-binding sites are occupied by cobalt(II) exhibits spectral features typical of tetrathiolate coordination with approximate Td microsymmetry [Vasák, M. (1980) J. Am. Chem. Soc. 102, 3953-3955]. With a total of 20 cysteine residues per molecule, this mode of metal binding implies that some of the thiolate ligands are shared by neighboring Co(II) ions, resulting in clustered structures. In this study, evidence for the existence of thiolate-linked Co(II) clusters is presented and their mode of formation is explored by comparing the optical and magnetic properties of forms of Co(II)-metallothionein containing 1-7 equivalents of Co(II). Preparations with up to 4 Co(II) equivalents display electronic spectra in the d-d and charge-transfer regions that resemble those of isolated tetrahedral Co(II)-tetrathiolate complexes. Upon binding of more than four Co(II) ions, however, the spectrum changes progressively and approaches in the fully saturated Co(II)-metallothionein an absorption profile similar to that of crystallographically defined model (Co)II-tetrathiolate clusters [Dance, I. G. (1979) J. Am. Chem. Soc. 101, 6264-6273]. These effects are closely paralleled by changes in the ESR spectrum. Above 4 Co(II) equivalents per thionein, the ESR signal at gx approximately 5.9 measured at 4 K decreases progressively in intensity, until in the fully occupied protein the complex is nearly diamagnetic. These changes, which were confirmed by measurements of paramagnetic susceptibility, establish the existence of Co(II) thiolate clusters in Co(II)-metallothionein. The loss of paramagnetism reflects most likely antiferromagnetic coupling of neighboring Co(II) ions brought about by a superexchange mechanism via the thiolate bridging ligands.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bremner I., Young B. W. Isolation of (copper, zinc)-thioneins from the livers of copper-injected rats. Biochem J. 1976 Aug 1;157(2):517–520. doi: 10.1042/bj1570517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bühler R. H., Kägi J. H. Spectroscopic properties of zinc-metallothionein. Experientia Suppl. 1979;34:211–220. doi: 10.1007/978-3-0348-6493-0_14. [DOI] [PubMed] [Google Scholar]
- EVANS J. C. Recent advances in radiotherapy. N Y State J Med. 1959 May 15;59(10):2003–2005. [PubMed] [Google Scholar]
- Eklund H., Nordström B., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Brändén C. I. The structure of horse liver alcohol dehydrogenase. FEBS Lett. 1974 Aug 25;44(2):200–204. doi: 10.1016/0014-5793(74)80725-8. [DOI] [PubMed] [Google Scholar]
- Epstein M., Navon G. DSS as an activator of carboxypeptidase A. Biochem Biophys Res Commun. 1969 Jul 7;36(1):126–130. doi: 10.1016/0006-291x(69)90658-5. [DOI] [PubMed] [Google Scholar]
- Etzel K. R., Shapiro S. G., Cousins R. J. Regulation of liver metallothionein and plasma zinc by the glucocorticoid dexamethasone. Biochem Biophys Res Commun. 1979 Aug 28;89(4):1120–1126. doi: 10.1016/0006-291x(79)92124-7. [DOI] [PubMed] [Google Scholar]
- KAGI J. H., VALLEE B. L. Metallothionein: a cadmium and zinc-containign protein from equine renal cortex. II. Physico-chemical properties. J Biol Chem. 1961 Sep;236:2435–2442. [PubMed] [Google Scholar]
- Kojima Y., Berger C., Vallee B. L., Kägi J. H. Amino-acid sequence of equine renal metallothionein-1B. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3413–3417. doi: 10.1073/pnas.73.10.3413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kägi J. H., Himmelhoch S. R., Whanger P. D., Bethune J. L., Vallee B. L. Equine hepatic and renal metallothioneins. Purification, molecular weight, amino acid composition, and metal content. J Biol Chem. 1974 Jun 10;249(11):3537–3542. [PubMed] [Google Scholar]
- Otvos J. D., Armitage I. M. Structure of the metal clusters in rabbit liver metallothionein. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7094–7098. doi: 10.1073/pnas.77.12.7094. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piotrowski J. K., Trojanowska B., Wiśniewska-Knypl J. M., Bolanowska W. Mercury binding in the kidney and liver of rats repeatedly exposed to mercuric chloride: induction of metallothionein by mercury and cadmium. Toxicol Appl Pharmacol. 1974 Jan;27(1):11–19. doi: 10.1016/0041-008x(74)90169-0. [DOI] [PubMed] [Google Scholar]
- Squibb K. S., Cousins R. J. Control of cadmium binding protein synthesis in rat liver. Environ Physiol Biochem. 1974;4(1):24–30. [PubMed] [Google Scholar]
- Squibb K. S., Cousins R. J., Feldman S. L. Control of zinc-thionein synthesis in rat liver. Biochem J. 1977 Apr 15;164(1):223–228. doi: 10.1042/bj1640223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vasák M., Kägi J. H., Hill H. A. Zinc(II), cadmium(II), and mercury(II) thiolate transitions in metallothionein. Biochemistry. 1981 May 12;20(10):2852–2856. doi: 10.1021/bi00513a022. [DOI] [PubMed] [Google Scholar]
- Weser U., Rupp H., Donay F., Linnemann F., Voelter W., Voetsch W., Jung G. Characterization of Cd, Zn-thionein (metallothionein) isolated from rat and chicken liver. Eur J Biochem. 1973 Nov 1;39(1):127–140. doi: 10.1111/j.1432-1033.1973.tb03111.x. [DOI] [PubMed] [Google Scholar]
